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Figure	1.	Schematic	diagram	illustrating	(a)	two-dimensional	and	(b)	three-dimensional	
hexagonal	convection	patterns	in	a	fluid,	which	is	heated	from	below	and	cooled	from	above	
(see	the	text).	
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Figure	2.	Two-	and	three-dimensional	cloud	patterns	due	to	convection	in	the	atmosphere	over	
the	North-West	Atlantic	Ocean	and	the	Labrador	Sea.	The	arrow	indicates	the	direction	of	the	
average	wind-vector.	Cloud	streets	(two-dimensional	convection)	are	observed	in	the	Labrador	
Sea,	while	“open	convection	cells”	(three-dimensional	convection)	are	observed	more	towards	
the	south	over	the	Atlantic	Ocean.	
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Part 1: Stability of a stratified fluid in rest 
By Aarnout van Delden (http://www.staff.science.uu.nl/~delde102/TinF.htm ) 
 
 
1. Introduction 
 
These lecture notes consist of five parts, intended for five two-hour lectures, as part of the 
third year physics bachelor course on “Turbulence in Fluids” at the University of Utrecht. 
The topic is the theory of thermal convection of a stratified fluid, under the influence of 
gravity, between rigid perfectly conducting horizontal boundaries, held at different 
temperatures (figure 1). If the temperature of the lower boundary is higher than the 
temperature of the upper boundary, a regular pattern of convection cells, consisting of areas 
of ascending and descending currents, emerges, as is illustrated in figure 1.  Figure 2 shows 
that this phenomenon occurs also in Earth’s atmosphere. This prototype problem of fluid flow 
has been used to study the properties of predictability in, and chaotic solutions of, non-linear 
deterministic systems, as manifestations of “turbulence”, both experimentally and 
numerically. 
 
 
2. Basic equations 

The basic equations that describe the evolution in time (t) of velocity (u, v, w), temperature 
(T) and pressure (p) in (x, y,z) space of a viscous fluid under the influence of gravity (g is the 
acceleration due to gravity) are (see lecture 1 by Anna von der Heydt): 
 

� 

∂u
∂t

+ u ∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

= −
1
ρ
∂p
∂x

+ν∇2u ;      (1) 

 

� 

∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z

= −
1
ρ
∂p
∂y

+ν∇2v  ;      (2) 

 

� 

∂w
∂t

+ u ∂w
∂x

+ v ∂w
∂y

+ w ∂w
∂z

= −
1
ρ
∂p
∂z

+ν∇2w − g ;     (3) 

 

� 

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0  ;         (4) 

 

� 

∂T
∂t

+ u ∂T
∂x

+ v ∂T
∂y

+ w ∂T
∂z

= κ∇2T  .       (5) 

 
The “Laplace operator” is defined as 
 

� 

∇2 ≡
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
 . 
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The first three equations represent the three components of the equation of motion (Navier-
Stokes equation). The fourth equation is derived from mass conservation, assuming 
incompressibility, which is an approximation to any fluid, but holds better for water than for 
air. Eq. 5 is an expression of Fourier’s law applied to a fluid parcel. The temperature of a 
fluid parcel is conserved, except for the effect of molecular heat conduction (ν and κ are 
constant molecular diffusion coefficients for momentum and heat, respectively).  
 
 
3. Linear equations for the time-evolution of small perturbations 
 
Decompose all variables into a background steady (static) state plus time-dependent 
perturbations: 
 

� 

u = 0 + u' x,y,z,t( )  

� 

T = T0 z( ) +T ' x,y,z,t( )  

� 

p = p0 z( ) + p' x,y,z,t( ) 

� 

ρ = ρ0 z( ) + ρ' x,y,z,t( )        (6) 
 
Perturbations (deviations from the state of rest) are small. This means that e.g. T’<<T0, etc. 
The background state is in hydrostatic balance, i.e. 
 

� 

∂p0
∂z

= −ρ0g          (7) 

 
Substitute these assumptions into the equations and assume that products of perturbations are 
small. 
 

� 

∂u'
∂t

= −
1

ρ0 + ρ'( )
∂p'
∂x

+ν∇2u'         (8) 

 

� 

∂v'
∂t

= −
1

ρ0 + ρ'( )
∂p'
∂y

+ν∇2u'        (9) 

 

� 

∂w'
∂t

= −
1

ρ0 + ρ'( )
∂p0
∂z

−
1

ρ0 + ρ'( )
∂p'
∂z

+ν∇2w'−g      (10) 

 
Note that 
 

� 

−
1

ρ0 + ρ'( )
∂p0
∂z

=
ρ0g

ρ0 + ρ'( ) =
g

1+ ρ' /ρ0( ) 	
	
so that (10) becomes 
	

� 

1+ ρ' /ρ0( ) ∂w'∂t
= g −

1+ ρ' /ρ0( )
ρ0 + ρ'( )

∂p'
∂z

+ν 1+ ρ' /ρ0( )∇2w'− 1+ ρ' /ρ0( )g  

 
Now assume that 

� 

1+ ρ' /ρ0 ≈1,	so	that	
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� 

∂w'
∂t

≈ −
1
ρ0

∂p'
∂z

+ν∇2w'−g ρ'
ρ0

       (11) 

 
Likewise: 
	

� 

∂u'
∂t

≈ −
1
ρ0

∂p'
∂x

+ν∇2u'         (12)	

	

� 

∂v'
∂t

≈ −
1
ρ0

∂p'
∂y

+ν∇2v'        (13) 

 
The approximate equation of state for a typical fluid is 
 

� 

ρ = ρ0 1−α T −T0( )( )           (14) 
 
(α is the coefficient of thermal expansion), so that 
 

� 

ρ'= −αρ0T '            (15) 
 
The last term in eq. 11 (the “buoyancy term”) becomes 
 

� 

−g ρ'
ρ0

= gαT '           (16) 

 
Further details of this linearisation of the equation of motion (commonly referred to as 
“Boussinesq approximation”) can be found in the well-known paper by Spiegel and Veronis 
(1960) (see the list of references).  

The temperature equation, linearised around the basic state of rest, is 
 

� 

∂T '
∂t

+ w' ∂T0
∂z

= κ∇2T '           (17) 

 
In the state of rest, the fluid possesses a vertical temperature gradient if the temperature of the 
lower boundary differs from the temperature of the upper boundary. The associated “lapse 
rate”, 
 

� 

∂T0
∂z

=
dT0
dz

≡ −Γ ,         (18) 

 
is the constant vertical temperaure gradient which is sustained by molecular conduction when 
there is no macroscopic motion. Eq. 15 becomes 
 

� 

∂T '
∂t

= Γw'+κ∇2T '         (19) 

 
Take the 

� 

∇2 of eq. 11 and substituting (16) yields 
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� 

∂∇2w'
∂t

≈ −
1

ρref
∂∇2p'
∂z

+ν∇2∇2w'+gα∇2T '      (20) 

 
For simplicity we have assumed that 

� 

ρ0 ≈ ρref = constant . Now, take ∂/∂x of (12), ∂/∂y of 
(13), ∂/∂z of (11) and add the results, and then use (4) and (16): 
 

� 

∇2p'= gαρref
∂T '
∂z

         (21) 

 
With this (20) becomes 
 

� 

∂∇2w'
∂t

= ν∇2∇2w'+gα∇H
2 T '        (22) 

 
where 
 

� 

∇H
2 ≡

∂2

∂x2
+

∂2

∂y2
 .         (23) 

 
 
4. Boundary conditions 
 
Eqs. (19) and (22) form a closed set of two equations governing the time evolution of small 
perturbations in a fluid with respect to the state of rest. We apply this set of equations to a 
fluid between horizontal, perfectly conducting, stress-free boundaries, which are maintained 
at different fixed temperatures. The lower plate is at z=0; the upper plate is at z=H. Therefore, 
we set 
 

� 

w' = 0 at z = 0 and z = H         (24) 
 
Stress-free conditions implies 
	

� 

∂u
∂z

= ∂v
∂z

= 0 at z = 0 and z = H        (25) 

 
With (4) this implies that 
 

� 

∂2w'
∂z2 = 0 at z = 0 and z = H         (26) 

 
A fixed temperature implies that 
 

� 

T ' = 0 at z = 0 and z = H         (27) 
 
In view of (19) this implies 
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� 

∂2T '
∂z2 = 0 at z = 0 and z = H         (28) 

 
 
5. Analysis of the stability of the state of rest and the onset of convection 
 
We now simplify the problem by reducing it to a two-dimensional problem. If ∂/∂y=0, the 
flow takes place in a two-dimensional vertical cross-section. Eqs. (19) and (22) become 
 

� 

∂T '
∂t

= Γw'+κ
∂2

∂x2 +
∂2

∂z2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ T '         (29) 

 
and 
 

� 

∂
∂t

∂2

∂x2 +
∂2

∂z2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ w' = gα ∂2T '

∂x2 +ν
∂2

∂x2 +
∂2

∂z2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

w'      (30) 

 
On an infinite domain in the horizontal direction, the solution, which is consistent with the 
boundary conditions (24), (26), (27) and (28), corresponds to the real part of  
 

� 

w' =W exp ilx +σt{ }sin πnz
H

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ; T ' = Θexp ilx +σt{ }sin πnz

H
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  .   (31) 

 
Physically, this solution represent a wave-like, or cellular, fluid motion/temperature pattern. 
The parameters, l, n, σ represent, respectively, the horizontal wave number, the vertical wave 
number and the growth- or damping rate of this wave-like motion- or temperature-pattern. 
The real solution of w’ and T’ consists of a superposition of these wave-like “Fourier 
modes”. In the “linear phase”, i.e. when the perturbations are very small, so that the linear 
equations (29) and (30) are valid, these Fourier modes do not interact. The growth or decay of 
each Fourier mode is independent of the growth or decay of all other Fourier modes.  
 We determine the fastest growing “mode”, as follows. Substitute (31) into (29) and (30): 
 

� 

−σk2W = −gαl2Θ + νk4W ; 
 

� 

σΘ = ΓW −κk2Θ .         (32) 
 
Here 
 

� 

k2 = l2 +
πn
H

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

.         (33) 

 
Rewrite this linear homogeneous system of two equations as 
 

� 

MX = 0  ,          (34) 
 
where the vector, X, is  
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� 

X =
W
Θ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟           (35) 

 
and the matrix, M, is 
 

� 

M = −σk2 −νk4 gαl2

Γ −σ −κk2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  .       (36) 

 
A non-trivial solution exists if the determinant of M is zero, which yields 
 

� 

σk2 +νk4( ) σ + κk2( ) − gαl2Γ = 0  ,       (37) 

 
which yields a quadratic equation for the growth-rate, σ 
 

� 

σ2 + ν + κ( )k2σ +νκk4 − gαl
2Γ

k2
= 0  .      (38) 

 
The solution is 
 

� 

σ = −
ν + κ( )k2
2

±
1
2

ν + κ( )2k4 − 4 νκk4 − gαl
2Γ

k2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/2

.    (39) 

 
The growth-rate, σ, is positive , i.e. the state of rest is unstable to small perturbations, if 
 

� 

−4 νκk4 − gαl
2Γ

k2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ > 0  ,        (40) 

 
or if 
 

� 

Γ >
νκk6

gαl2
=

νκ
gαl2

l2 +
πn
H

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3

 .       (41) 

 
Evidently, the growth rate of the perturbations is positive if the lapse rate (vertical 
temperature gradient) exceeds a threshold value, which depends, among other, on the 
horizontal wave number, l, and on the vertical wave number, n. The lapse rate at which 
disturbances are marginally stable is designated as the “critical lapse rate”: 
 

 

� 

Γcrit =
νκ
gαl2

l2 +
πn
H

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3

 .        (42) 

 
The minimum value of 

� 

Γcrit 	occurs at the minimum value of n, which is n=1, and if 
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� 

∂Γcrit
∂ l2( ) = 0  ,          (43) 

 
which corresponds to 
 

� 

l2 =
1
2

π
H

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2
,          (44) 

 
if n=1. Because 
 

� 

l =
2π
L

 .          (45) 

 
This corresponds to 
 

� 

L = 2 2H  .          (46) 
 
The preferred horizontal wavelength of an exponentially growing pattern of convection cells is 
2√2≈2.8 times the depth of the layer. One individual cell has an aspect ratio (horizontal scale 
divided by vertical scale= L/H) equal to √2. This is in reasonable agreement with the laboratory 
observations, shown in figure 3. One convection cell spans the full depth of the fluid, i.e. the 
solution (30) with n=1 is “selected” in reality, as is predicted in theory.  

Lord Rayleigh (John William Strutt) (1842-1919), winner of the 1904 Nobel prize for 
Physics, published these theoretical results in 1916. Rayleigh was inspired by laboratory 
experiments due to Henri Bénard (1874-1939), which were published in 1900 (see list of 
references to part 1 in section 7). Thermal convection in stratified viscous fluids between 
horizontal boundaries under the influence of gravity is frequently referred to as “Rayleigh-
Bénard convection”. 
 

 
Figure	3.	Side-view	(differential	interferograms)	of	two-dimensional	convection	cells	in	silicone	
oil	in	a	rectangular	box	of	relative	dimensions	10:4:1,	which	is	heated	from	below.	Uniform	
heating	produces	convection	“rolls”	parallel	to	the	shorter	side	(Van	Dyke,	1982).	The	flow	
pattern	is	remarkable	orderly!	



	 11	

6. Exercises, part 1  
 
(1)  
The aspect ratio of observed convection cells (figure 3) is not exactly in agreement with the 
prediction made by Lord Rayleigh’s theory. Give at least three likely reasons for this (slight) 
disagreement? 
 
(2)  
The instability criterion (41) is commonly expressed in terms of the so-called Rayleigh 
number, Ra, which is a non-dimensional number, defined as 
 

� 

Ra ≡ gαΓH
4

κν  .          (47) 

 
What is the critical value of the Rayleigh number at the preferred horizontal wavelength? Plot 
the marginal value of the Rayleigh number as a function of the aspect ratio, L/H, where the 
Rayleigh number is the ordinate. Identify the region of instability in this graph. Will this 
curve shift upwards or downwards if no-slip conditions are imposed on the upper and lower 
boundaries, instead of stress-free conditions (section 4)? 
 
(3)  
Each “mode” possesses a “critical modal Rayleigh number” at which linear stability sets in. 
At which minimum “critical modal Rayleigh number” is a “mode” with n=2 unstable. 
 
(4)  
Express eqs. (29) and (30), 
 

� 

∂T '
∂t

= Γw'+κ ∂2

∂x2
+

∂2

∂z2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ T '         (29) 

 
and 
 

� 

∂
∂t

∂2

∂x2
+

∂2

∂z2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ w'= gα

∂2T '
∂x2

+ν
∂2

∂x2
+

∂2

∂z2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

w'      (30) 

 
in dimensionless form, in terms of the following units 
 

� 

L{ } = H; t{ } =
H2

κ
; T{ } =

κν
gαH3  .       (48) 

 
Verify that 

� 

{t} has the unit of time (seconds) and that 

� 

T{ } has the units of temperature 
(degrees Kelvin).	The new (non-dimensional) unit of time, t*, is 
 



	 12	

� 

t* ≡ κ
H2

t  .          (49) 

 
The system of eqs. 29 and 30 contains 5 imposed parameters, which may determine the 
solution. In the non-dimensional form we discover that the solution depends on only two 
parameters: the Rayleigh number and a second non-dimensional number, which is commonly 
referred to as the “Prandtl number”, Pr. Identify the Prandtl number.  
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	 13	

Part 2: Spectral model of thermal convection 
By Aarnout van Delden (http://www.staff.science.uu.nl/~delde102/TinF.htm ) 
 
 
8. Finite amplitude convection 
 
This section introduces the problem of finite amplitude thermal convection between 
horizontal, stress-free, perfectly conducting boundaries. At Rayleigh numbers above the 
minimum critical value many wave-like disturbances, or so-called “Fourier modes”, grow to 
appreciable amplitudes, so that non-linear interactions between these modes cannot be 
neglected. The problem becomes very complicated, as we shall see in the following. Here, we 
restrict our attention to interactions between unstable waves and the horizontal mean state. 
Figure 4 shows laboratory observations of the horizontal-mean steady temperature in a fluid 
layer undergoing convection at different Rayleigh numbers. Initially, when the fluid is in rest, 
the horizontal mean temperature is linear with height (eq. 18). After convection is initiated by 
hydrostatic instability, warm fluid is carried upward and cold fluid is carried downward. 
Temperature increases above mid-level, while it decreases below mid-level. This process 
reduces the potential energy of the fluid. The fluid layer becomes more stable around mid-
level and less stable near the lower and upper boundaries.  
 

 
Figure	4.	Horizontally	averaged	steady	state	temperature	profiles	at	various	normalised	
Rayleigh	numbers,	for	sea-water	with	a	salinity	3.5	%.	TL	is	the	temperature	of	the	lower	
boundary;	ΔT	is	the	temperature	difference	between	upper	and	lower	boundary.	The	height	is	
scaled	with	the	depth	of	the	fluid	layer,	H.		Note	that	convection	warms	the	upper	half	of	the	
fluid	as	much	as	it	cools	the	lower	half	of	the	fluid.	This	is	figure	8	in	the	paper	by	Gille,	J.,	1967:	
Interferometric	measurement	of	temperature	gradient	reversal	in	a	layer	of	convecting	air.	J.	
Fluid	Mech.,	30,	371-	384.		
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 As in the linear analysis of the previous sections, we restrict our attention to two-
dimensional flow in the x-z plane. The continuity eq. 4 now becomes	
 

� 

∂u
∂x

+
∂w
∂z

= 0 .          (50) 

 
We may then introduce a stream function, ψ, as follows 
 

� 

u = −
∂ψ
∂z

; w =
∂ψ
∂x

 ,          (51) 

 
so that the flow pattern is described by one variable, i.e. the stream function, ψ. The flow in 
the x-z plane is described by eqs. 1 and 3. Including the Boussinesq approximation (section 
3), these are  
    

� 

∂u
∂t

+ u ∂u
∂x

+ w ∂u
∂z

= −
1

ρref
∂p'
∂x

+ν∇2u        (52) 

� 

∂w
∂t

+ u ∂w
∂x

+ w ∂w
∂z

= −
1

ρref
∂p'
∂z

+ν∇2w − gαT '      (53) 

 
By taking the z-derivative of (52) and subtracting the result from the x-derivative of (53) these 
two equations can easily be reduced to  
 

� 

d∇2ψ
dt

=
∂
∂t
∇2ψ −

∂ψ
∂z

∂
∂x

∇2ψ +
∂ψ
∂x

∂
∂z

∇2ψ = αg ∂T '
∂x

+ ν∇2∇2ψ  .  (54) 

 
With the temperature equation (5), which is repeated here: 
 

� 

∂T '
∂t

−
∂ψ
∂z

∂T '
∂x

+
∂ψ
∂x

∂T '
∂z

= Γ
∂ψ
∂x

+ κ∇2T '  ,      (55) 

 
this forms a closed set with two unknowns.  
 With the following non-dimensional units 
 

� 

length = H; time = H2

κ
; temperature = κν

gαH3  ,     (56) 

 
eqs. (54) and (55) become, repectively 
 

� 

∂
∂t
∇2ψ −

∂ψ
∂z

∂
∂x

∇2ψ +
∂ψ
∂x

∂
∂z

∇2ψ = Pr ∂θ
∂x

+Pr∇2∇2ψ      (57) 

 

� 

∂θ
∂t

−
∂ψ
∂z

∂θ
∂x

+
∂ψ
∂x

∂θ
∂z

= Ra ∂ψ
∂x

+ ∇2θ .      (58) 
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The symbol, θ, is used to indicate the non-dimensional temperature perturbation (in order to 
avoid the use of T’, which looks ugly). We do not use a different symbol for all other variables 
and coordinates.  
 The Rayleigh number is defined as 
 

� 

Ra ≡ gαΓH
4

κν            (59) 

 
The Prandtl number is defined as 
 

� 

Pr ≡ ν
κ

 .          (60) 

 
 
9. Fourier transformation of the governing equations 
 
If we allow only for two-dimensional flow in a vertical cross-section of the fluid layer, any 
variable, for instance the temperature, can be written as a Fourier series as follows 
 

� 

θ x,z,t( ) = Θα
α
∑ t( )Sα x,z( )         (61) 

	
where 

� 

Θα t( ) 	is a complex amplitude and where	 
 

� 

Sα x,z( ) ≡ exp iπ axlα x + nαz( ){ } 	.	 	      (62)	

	
In this definition, 
 

� 

ax =
2H
L
	,	 	         (63)	 	

	
is a measure of the aspect ratio (L/H) of the domain. Because periodic boundary conditions 
are assumed in the horizontal direction, this domain may be repeated in the horizontal 
direction ad infinitum, so as to obtain a regular array of cells with prescribed wavelength. 
Furthermore, the wave-vector, α, is defined as,  
 

� 

α ≡ lα ,nα( ) ,	          (64)	
	
in which 

� 

lα 	and	

� 

nα 	are integer wave numbers. The sum, 

� 

α
∑ , over all wave-vectors, α, 

corresponds to sum over all integer combinations of 

� 

lα 	and	

� 

nα , running from 

� 

−∞  to 

� 

+∞ . 
 In view of the observations, shown in figures 3 and 4, a reasonable fit to the temperature 
distribution in a fluid layer filled with two-dimensional convection cells is 
 

� 

T '(x,y,t) = C0(t)sin 2πz
H

+C1(t)cos 2πx
L

sinπz
H

 .     (65) 
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In other words, the temperature perturbation, θ, can, in principle, be represented as a sum of 
two Fourier modes with “wave-vectors”, (l,n)=(0,2) and (l,n)=(1,1) and associated time-
dependent amplitudes, 

� 

C0  and 

� 

C1. The first Fourier mode represents a modification of the 
initial linear temperature profile, while the second Fourier mode represents the perturbed 
temperature distribution, which is set up by rising warm fluid and cold sinking fluid.  
 The lowest-order model of finite amplitude convection that can be constructed is one in 
which the Fourier series in (61) is truncated to include only the two terms on the right hand 
side of (65).  
 Stress-free and perfectly conducting upper and lower boundaries imply the following 
boundary conditions: 
 

� 

w =
∂ψ
∂x

= 0; ∂u
∂z

= −
∂2ψ
∂z2 = 0; θ =

∂2θ
∂z2 = 0 at z = 0 and z = 1.   (66) 

 
Let us now represent the stream function and the temperature by Fourier series as 
 

� 

ψ
θ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

Ψα
Θα

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

α
∑ Sα x,z( )  ,         (67) 

 
where S is defined in (62). 
 The orthonormality of Sα is expressed in the form 
 

� 

SαSβ
*∫ dσ = δα,β  ,         (68) 

 
where the asterisk designates a complex conjugate, while δ is the kronecker delta. The 
integration extends over the region 
 

� 

0 ≤ x ≤ 2
ax

,  0 ≤ z ≤ 2  ,         (69) 

 
and dσ is an area element divided by the total area, 4/ax. Note that the integration is carried 
over a domain, which is two times as large as the domain of physical interest, which has its 
top boundary at z=1. This is no more than a mathematical trick. 
 The left hand side of eq. 58 consists of one linear term and two non-linear terms. If we 
substitute the Fourier series (67) into eq. 58, the non-linear terms become 
 

� 

−iπnαΨαiπaxlβΘβ + iπaxlαΨαiπnβΘβ{ }Sα
α,β
∑ Sβ  

� 

= π 2ax nα lβ − nβ lα{ }ΨαΘβSα
α,β
∑ Sβ .      (70) 

 
Here, 

� 

α,β
∑ is a double sum over all wave vectors, α and β.  It is now very convenient to use 

the property of orthonormality of S (62) by substituting the Fourier series (67) into eq. 58 and 
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then multiplying the result by 

� 

Sγ
* and integrating over the region indicated in (69). The 

spectral form of the temperature equation (58) thus becomes 
 

� 

dΘγ
dt

= Iγαβ
α,β
∑ ΨαΘβ + iRaπaxlγΨγ − π 2kγ

2Θγ  ,     (71) 

 
where 
 

� 

kγ
2 = ax

2lγ
2 + nγ

2  	 	 	 	 	 	 	 	  (72) 
	
and the interaction coefficient,  
 

� 

Iγαβ ≡ π 2ax nα lβ − nβ lα( )δγ ,α+β  .       (73) 

 
All interaction coefficients are zero unless the selection rule (in vector form), 
 

� 

α + β = γ  ,           (74) 
    
is satisfied. The selection rule determines whether the interaction of the waves with wave 
vectors, α and β, contributes to a change of the amplitude of the wave with wave vector, γ. 
 The Fourier transformed eq. 57 becomes 
 

� 

dΨγ
dt

=
1
kγ
2 kβ

2
α,β
∑ IγαβΨαΨβ − iPr

axlγ
πkγ
2 Θγ −Prπ2kγ

2Ψγ  ,    (76) 

 
The Fourier-coefficients (or amplitudes) are complex. Therefore, they may be expressed as a 
sum of a real part (superscript, R) and an imaginary part (superscript, I) as follows: 
 

� 

Θγ = Θγ
R + iΘγ

I ; Ψγ = Ψγ
R + iΨγ

I  .       (77) 
 
The fields of temperature and stream function are real, so that 
 

� 

Θγ = Θ−γ
*  ,          (78) 

 
or 
 

� 

Θl,n
R = Θ−l,−n

R  and Θl,n
I = −Θ−l,−n

I        (79) 
 
and analogous relations for Ψ. 
 The boundary conditions at the top and bottom of the layer imply a sine-dependence in the 
vertical for both θ and ψ. Therefore, 
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� 

Θl,n
R = −Θl,−n

R  and Θl,n
I = −Θl,−n

I        (80) 
 
and analogous relations for Ψ. Because the temperature and the vertical velocity are in phase 
in the horizontal direction, we can, without loss of generality, assume that both these fields 
possess a cosine-dependence in the horizontal direction. This means that the stream function 
has a sine-dependence in the horizontal direction (eq. 51). We then have 
 

� 

Ψl,n
R = −Ψ−l,n

R  and Ψl,n
I = −Ψ−l,n

I ;       (81) 

� 

Θl,n
R = Θ−l,n

R  and Θl,n
I = Θ−l,n

I .       (82) 
 
The relations (79), (80) and (82) imply that  
 

� 

Θl,n
R = 0 .          (83) 

 
The relations (79), (80) and (81) imply that 
 

� 

Ψl,n
I = 0 .          (84) 

 
The relations (79), (80) and (81/82) also imply that we need only explicitly solve the 
differential equations that govern the amplitudes pertaining to 1 quadrant in wave number 
space, for example the quadrant corresponding to 

� 

l ≥ 0 and n ≥ 0 . 
 
 
10. Spectral energy cascade in thermal convection 
 
Suppose that one so-called fundamental mode is self-excited, i.e. has a positive linear growth 
rate. Let this be (l,n)=(1,1). The initial effect of the non-linear interactions is to distort the 
horizontal mean temperature profile in such a way as to stabilize it, making the temperature 
field more isothermal in the mid-region and enhancing the unstable temperature gradients near 
the upper and lower boundaries, thereby increasing the vertical heat transport. This is 
achieved through the interaction of (1,1) and (-1,1), which creates (0,2) in the temperature 
field (see the selection rule 74), but not in the stream function field (check this!). In the second 
instance the original symmetric cellular stream function pattern is distorted due to the 
interaction between (±1,1) and (0,2), which creates (±1,3). After that the interaction between 
(1,3) and (1,-1) will create (2,2), and so on. The energy flows up the spectrum to modes with 
wavelengths 1/2, 1/3, 1/4…  of the wavelength of the fundamental self-excited (linearly 
unstable) mode. If this fundamental mode has even parity, i.e. (l+n) is an even number, the 
selection rule leads to an important property of this cascade of energy, which limits the 
amount of wave vectors that are excited through the non-linear interactions, namely that only 
even parity modes are excited. This is the reason why odd-parity modes are usually neglected 
in studies on cellular convection (see e.g. Kuo, 1961). The idea behind these studies is that 
convection starts at the critical Rayleigh number in the form of a fundamental mode and 
proceeds to create higher harmonics (of even-parity) through the nonlinear cascade effect, 
described above, to reach the finite amplitude equilibrium state. 
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11. Lorenz (1963) model 
 
Let us study only the first basic non-linear interaction in isolation. The temperature field is 
expanded into two Fourier components, as in eq. 65, while the stream function field is 
expanded into just one Fourier component, corresponding to the fundamental mode, 
(l,n)=(1,1). In other words, we take into account only the following wave vectors in the sum 
on the r.h.s. of eq. 61: 
 

� 

γ = (1,1), (−1,1), (−1,−1), (1,−1), (0,2), (0,−2) .     (85) 
 
We neglect all interactions with wave vectors outside this truncation. In view of the symmetry 
relations (79), (80) and (81/82), we need only to derive equations for the time-evolution of the 
Fourier coefficients,  
 

� 

Ψ1,1
R ,  Θ1,1

I ,  Θ0,2
I  .         (86) 

 
The only non-linear interactions involved are the following: (1,1) and (-1,1) interact to 
contribute to (0,2) and (1,-1) and (0,2) interact to contribute to (1,1) (the feedback). If all 
interactions with wave vectors outside the truncation are neglected, the non-linear terms are 
energy conserving. The resulting equations are 
 

� 

dX
dt

=
ax Pr

π ax
2 +1( )Y −π2 ax

2 +1( )Pr X ;       (87) 

� 

dY
dt

= −2π2axXZ + πaxRaX −π2 ax
2 +1( )Y ;      (88) 

� 

dZ
dt

= 4π2axXY − 4π2Z  ,        (89) 

 
where 
 

� 

X ≡ Ψ1,1
R ,  Y ≡ Θ1,1

I  and Z ≡ Θ0,2
I .       (90) 

 
This coupled set of three ordinary first-order non-linear differential equations (87-89) 
represents the so-called Lorenz (1963) low-order model of thermal convection. Because 
Edward Lorenz used a different time unit (see eq. 56) to express the governing equations (54 
and 55) in non-dimensional form, equations 87-89 differ from the original equations (i.e. eqs. 
25-27 on page 135 of Lorenz, 1963), which also appear on page 58 of the book by Edward Ott 
(1993), or on page 311 of the book by Stephen Strogatz (1994).  
 In eqs .87-89 X represents the intensity of the macroscopic convective motion, Y is 
proportional to the temperature difference between the ascending and descending currents, 
while Z is a measure of the distortion of the horizontal mean vertical temperature profile from 
linearity (figure 4). A positive value of Z indicates that the horizontal mean temperature 
gradient is distorted such that it is enhanced at lower and upper boundaries, so that molecular 
heat transport across these boundaries is enhanced. In the middle of the fluid layer this heat 
transport is taken care of by the macroscopic convective motions. 
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 The non-linear terms in eqs. 88 and 89 describe the interaction of the wave (or cellular 
motion) with the mean state (i.e with the horizontal mean temperature field). 
  The Lorenz model has three steady state (equilibrium) solutions, which are found by 
setting the time derivatives equal to zero. We see directly that one steady state solution is 

  

� 

! 
A ≡ X,Y,Z( ) = 0,0,0( ), which corresponds to the state of rest. The stability of the state of rest 
can be investigated by linearising the equations around this steady state, which can then be 
written compactly as 
 

  

� 

d
dt
! 
A = M

! 
A  ,          (91) 

 
with 
 

  

� 

! 
A ≡

X
Y
Z

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
 and M ≡

−π 2 ax
2 +1( )Pr ax Pr

π ax
2 +1( ) 0

πaxRa −π 2 ax
2 +1( ) 0

0 0 −4π 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 .    (92) 

 
A positive eigenvalue of the matrix, M, implies instability. This is the case if  
 

� 

Ra =
π4 ax

2 +1( )3
ax
2  .         (93) 

 
The critical Rayleigh number for the onset of convection is 
 

� 

Rac =
π4 ax

2 +1( )3
ax
2  .         (94) 

 
The minimum value of Rac occurs when ax =1/√2. The properties of the Lorenz model and its 
solutions are analysed in the exercises below. Exercises 5 to 8 will be done during the second 
tutorial. Exercise 9 is concerned with the two finite amplitude convective solutions and their 
stability to small-amplitude perturbations (homework). 
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12. Exercises, part 2  
 
(5)  
Figure 5  (next page) shows a regime diagram of laboratory convection as a function of Ra 
and Pr, demonstrating that time dependent flow emerges when Ra is sufficiently large. Time-
dependent turbulent flow emerges for lower Ra when Pr is small than when Pr is large. 
Which non-linear terms are responsible for this “early” onset of time-dependent flow at low 
Pr: those in eq. 57 (momentum advection) or those in eq. 58 (temperature advection)? Is the 
Lorenz model more applicable to low Pr convection or to high Pr convection? 
 
 

  
 
Figure	5	(exercise	7).	Regime	diagram	of	convection	in	fluids	with	different	Prandtl	numbers	
as	a	function	of	Rayleigh	number	for	convection	between	rigid	boundaries	(not	stress-free),	
distilled	from	laboratory	experiments.		Two-dimensional	convection	is	observed	at	low	Ra.	As	
the	Rayleigh	number	is	increased,	three-dimensional	cells	appear.	If	Ra	is	increased	further,	
steady	state	regular	cellular	flow	disappears	and	is	replaced	by	a	random	array	of	transient	
plumes.	Source:	Krishnamurti	and	Howard	(1981).	
 
 
(6)  
The Lorenz model has two other steady state solutions (next to the state of rest), 
corresponding to finite amplitude convection. Derive expressions for X, Y, and Z in these 
steady states. Write these expressions in terms of r=√(Ra-Rac) and ax (hint: the steady state 
values of X, Y, and Z do not depend on Pr). Convection modifies the horizontal mean 
temperature profile. In which way? Is this consistent with the observations shown in figure 
4? 
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(7)  
Show that the solution of the Lorenz model in phase space (i.e. as a function of X, Y and Z) 
for large t will either collapse to a point, to a line or to a two-dimensional surface (e.g. a 
torus) for all values of Ra, Pr and ax.  This means that the volume in phase space, spanned by 
the collection of trajectories corresponding to different initial states, will, as each point in 
phase space is displaced in accordance with eqs. 87-89, shrink to zero for large t. What is the 
associated e-folding time? In the words of Lorenz (1963) (p.135), all trajectories ultimately 
become confined to a specific subspace having zero volume. If the trajectories do not lie on a 
closed line or a torus in phase space, this subspace is referred as a “strange attractor”, a 
term which was introduced by the Belgian mathematician, David Ruelle, and the Dutch 
mathematician, Floris Takens, in 1971 (see section 9.3 in Strogatz (1994)). 
 
(8)   
Derive expression for the growth-rate of small perturbations to the state of rest, similar to the 
expression in eq. 39, but now in the non-dimensional units of the Lorenz model (eqs. 87-89). 
You will find that perturbations grow at a rate, which depends on the Rayleigh number, Ra, 
and the aspect ratio (or ax). Make a contour plot of the growth-rate as a function of Ra 
(vertical axis) and ax (horizontal axis). HINT: the growth-rate corresponds to the positive 
eigenvalue of the matrix, M, in eq. 92.  
 
 
(9)  (homework) 
Linearise the Lorenz equations (87-89) around the steady finite amplitude convective state 
and express this linearised system as in eqs. 91 and 92. Determine the linear stability of the 
finite amplitude steady states as a function of Ra and ax, for Pr=10 (this is the value of Pr that 
was chosen by Lorenz in 1963) by determining the eigenvalues of the corresponding matrix, 
M. Draw a regime diagram, with Ra as the ordinate and ax as the abscissa, indicating regions 
where finite amplitude convection is steady and stable and regions where finite amplitude 
convection is not steady and unstable. This can be done numerically. Determine the minimum 
value of Ra and the corresponding value of ax for which all steady states are linearly unstable 
and for which the model only has time-dependent solutions (for Pr=10). This exercise is 
given as homework. 
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Part 3: Chaos and predictability in the Lorenz (1963) model 
By Aarnout van Delden (http://www.staff.science.uu.nl/~delde102/TinF.htm ) 
 
 
14. Finite amplitude convection according to the Lorenz model 
 
When the Rayleigh number exceeds the critical value for onset of convection, convection 
currents in the form of convection cells grow in amplitude and start to modify the horizontal-
mean temperature. This interaction between the convection cell (the “wave”) and the 
horizontal mean thermal state is described by the nonlinear terms in the Lorenz model. The 
system evolves towards a new equilibrium (figure 7), which represents a state in which warm 
fluid is steadily transported upwards and cold fluid is steadily transported downwards on both 
sides of the upward current.  Remember: side boundary conditions are periodic. Figure 8 
shows the temperature distribution in the state of rest (upper panel) and in the final new 
equilibrium state (lower panel), which is a linearly stable equilibrium at this Rayleigh 
number. The convective equilibrium state, however, looses its stability to small perturbations 
for all Rayleigh numbers above certain value (exercise 8). What is the character of the 
solution if the system does not possess a stable equilibrium? Edward Lorenz addressed this 
question in his famous paper, published in 1963. A tentative answer to this question can only 
be obtained by numerical methods.  Lorenz trusted his numerical approximation to the time-
derivatives, which in hindsight was not the best choice, and so discovered the chaotic solution 
of his equations.  
 

 
Figure	7.		The	evolution	of	Y	and	Z	in	a	numerical	integration	of	the	Lorenz	equations	(87-89)	
with	Pr=10,	ax=1/√2	and	Ra=2Rac	(scaled	with	the	steady	state	value).	The	initial	state	is	the	
rest	state,	which	is	perturbed	slightly.	Because	the	rest	state	is	unstable	to	small	perturbations	
at	Ra=2Rac,	the	initial	perturbation	to	Y	grows	exponentially	(red	curve).	The	blue	curve	
represents	the	Fourier	amplitude,	Z=Θ0,2,	which	grows	due	to	nonlinear	interactions,	leading	to	
an	equilibration	and	an	adjustment	to	a	new	equilibrium	state	(lower	panel	of		figure	8).	The	
numerical	approximation	to	the	time	derivative	employs	the	Runge	Kutta	fourth	order	scheme.	 
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Figure	8.		The	temperature	at	t=0	(upper	panel)	and	at	t=1.5	(lower	panel),	scaled	with	the	
imposed	value	of	Ra	(=2Rac).	The	state	of	rest	is	an	unstable	equilibrium	at	Ra=2Rac,	while	the	
finite	amplitude	convective	equilibrium	is	a	stable	equilibrium	at	this	Rayleigh	number.		The	
Prandtl	number,	Pr=10	and	the	aspect	ratio	is	2√2.	The	temperature	distribution	in	“physical	
space”,	shown	here,	is	reconstructed	from	two	Fourier	coefficients,	Y	and	Z.	Animation:	
http://www.staff.science.uu.nl/~delde102/LorenzModelTemp_2Rac.mov	.	(see	exercise	14).	
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15. Sensitive dependence on initial conditions 
	
Lorenz studied numerical approximations of the time-dependent solutions of his model and 
discovered that these solutions are very sensitive to the initial state for certain combinations of 
values of the Rayleigh number and Prandtl number. At Ra=28Rac, Pr=10 and ax=1/√2, Lorenz 
(1963) obtained a solution which looks very much like the solution shown in figure 9.	This 
solution will never be exactly the same.		A slight difference in the initial condition leads to a 
different solution. In other words, small causes can have large effects, an idea that is known 
by the metaphor, “Butterfly Effect”, which has its origin in Lorenz’s question: can the flap of 
a butterfly's wings be instrumental in generating a tornado?  
	

	
Figure	9.		The	evolution	of	Y	and	Z	in	a	numerical	integration	of	the	Lorenz	equations	(87-89)	
with	Pr=10,	ax=1/√2	and	Ra=28Rac	(scaled	with	the	steady	state	value).	Initially	the	state	of	rest	
is	perturbed	slightly	by	putting	Y=0.1	while	X	and	Z	are	equal	to	zero.	Because	the	rest	state	is	
unstable	to	small	perturbations	at	Ra=28Rac,	the	initial	perturbation	to	Y	(red	curve)	grows	
exponentially.	The	blue	curve	represents	the	Fourier	amplitude,	Z=Θ0,2,	which	grows	due	to	
nonlinear	interaction	with	Y,	leading	to	an	adjustment	to	a	new	equilibrium.	However,	this	
equilibrium	is	also	unstable	to	small	perturbations.	The	system	has	no	stable	equilibrium	state.	
The	solution	appears	periodic	initially,	but	this	solution	also	seems	unstable.	The	numerical	
approximation	to	the	time	derivative	employs	the	Runge	Kutta	fourth	order	scheme.		
	
 Sensitive dependence on initial conditions means that the trajectories in phase space of two 
solutions, which are very close to each other initially, ultimately diverge in time, which makes 
the evolution “unpredictable”.  The predictability aspect of his model was the main interest of 
Edward Lorenz in 1960’s. The message of his 1963-paper was an inconvenient one for the 
weather and climate modeling community, which was at the beginning of the huge, still 
ongoing, project of developing numerical models to predict weather and climate. Lorenz’s 
message was practically ignored for nearly 10 years, being cited only 25 times in the first 10 
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years after publication. In 1971 two mathematicians: David Ruelle and Floris Takens, 
published a paper, entitled  “On the Nature of Turbulence”, which became very influential. 
This paper connected Lorenz’s ideas about “predictability” to the problem of the nature or 
definition of turbulence. After its discovery by mathematicians in the early 1970’s, Lorenz’s 
1963-paper became a “seminal paper”. Now (in 2021) it is no doubt the most cited paper in 
Meteorology (more than 25 thousand times until Jnaury 2022)! The history of research on the 
topic of Lorenz’s 1963-paper is sketched in a book entitled, “The Essence of Chaos”, 
published in 1993. Chapter 3 (“Our Chaotic Weather”) and chapter 4 (“Encounters with 
Chaos”) are highly recommended. 
 
 
16. The “Strange Attractor” 
 
The solution, shown in figure 9, is shown again in figure 10, but now as a trajectory 
projected on the Y-Z plane in phase space. The trajectory wanders through phase space at 
random, leaving and entering the “basins of attraction” of the two fixed points representing 
the steady convective equilibria on either side of the Z-axis (the line Y=0).  In fact, the 
trajectory never returns to the same point in phase space and is therefore referred to as 
“chaotic”. The chaotic trajectory, seen in figure 10, forms an object, which is called a 
“Strange Attractor”. This term was used first by David Ruelle in 1971 in a talk at a meeting 
in La Jolla (California), in the presence of Edward Lorenz. The title of Ruelle’s talk was, 
“Strange Attractors as a Mathematical Explanation of Turbulence”. The Strange Attractor in 
figure 10 also resembles the wings of a Butterfly.  This, probably, was the inspiration for 
Lorenz’s question on the effect of a flap of a butterfly's wings, cited in the previous section.  
 

 
Figure	10.		The	solution,	shown	in	figure	9,	in	a	two-dimensional	(Y,Z)	section	of	phase	space.	
Note:	Y	and	Z	are	not	scaled,	as	in	figure	9.		
Animation:	https://webspace.science.uu.nl/~delde102/LorenzModelTemp_28Rac.mov. 
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17. Divergence of nearby trajectories  
 
Suppose that we measure the temperature in an experimental system with an error, |δ0|. We 
then use this measured value as an initial condition to make a forecast with a numerical 
model of the experimental system. If the system is non-linear it may have a chaotic solution. 
This means that the initial error will amplify with time. How fast is this amplification?  
 Following ideas suggested first by the Russian mathematician, Aleksandr Lyapunov 
(1857-1918), it is hypothesized that the amplification of the error is exponential in time. In 
other words, after a time, t, the absolute value of the error, δ, is  
 

� 

δ(t) ≈ δ0 exp λt( ) .          (95) 
 
The growth-rate of the error, λ, is called “Lyapunov exponent”.  
 How far in time will we accept the prediction? This depends on our “tolerance”. Let a be 
a measure of the tolerance. In other words, the prediction is not accepted if 

� 

δ(t) > a . This 
occurs after a time in the order of 
 

� 

thorizon ≈
1
λ
ln a

δ0
 .          (96) 

 
This implies an error-doubling time, equal to ln(2)/λ, which only depends on the Lyapunov 
exponent. We can increase 

� 

thorizon 	by accepting a larger error, or, better, by reducing the 
initial error. Let us reduce the initial error, |δ0|, by a factor 

� 

10−n , where n is a positive 
integer. How much longer can we predict? For the same tolerance, the increase of 

� 

thorizon is 
 

� 

Δthorizon ≈
n
λ
ln10 .         (97) 

 
Therefore, 

� 

thorizon	increases only linearly	by a constant factor 

� 

ln10 /λ ≈ 2.3/λ  for each 
factor of 10 in the reduction of the error (see exercise 13d).  
 
 
18. Dissipative system: volume contraction in phase space  
 
The Lorenz model is “dissipative”. This has an interesting consequence for the dimension of 
the attractor in phase space. The solution of the Lorenz model travels along a trajectory in 
phase (X, Y, Z)-space with a “velocity”,  
 

� 

U,V ,W( ) ≡ dX
dt
, dY
dt
, dZ
dt

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  .        (98) 

 
The divergence of this “velocity” vector is proportional to the change of the volume, 
V=ΔXΔYΔZ,  of a “fluid parcel” in phase space. We can write, 
 

� 

1
V
dV
dt

=
1
ΔX

dΔX
dt

+
1
ΔY

dΔY
dt

+
1
ΔZ

dΔZ
dt 	 	 	 	 	 	

(99)	
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The distance, 

� 

ΔX , represents the distance in the X-direction of two trajectories (solutions), 
labeled “1” and “2”, so that we can write: 
	

� 

1
ΔX

dΔX
dt

=
1
ΔX

d
dt

X1 − X2( ) =
1
ΔX

dX1
dt

−
dX2
dt

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

ΔU
ΔX

≈
∂U
∂X

=
∂
∂X

dX
dt 	.	 	 (100) 

 
Applying this idea also to ΔY and ΔZ leads to 
 

� 

1
V
dV
dt

=
∂
∂X

dX
dt

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

∂
∂Y

dY
dt

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

∂
∂Z

dZ
dt

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = −π2 ax

2 +1( )Pr−π2 ax2 +1( ) − 4π2 < 0  . (101) 

 
(Lorenz (1963), p. 135). This means that the volume of a collection of trajectories in phase 
space decreases in time at a rate, which is proportional to 

� 

(π 2((ax
2 +1)(Pr+1)) + 4) . This 

implies that all trajectories will ultimately become confined to a subspace in phase space 
having zero volume! (page 135, Lorenz (1963)). If the solution is a stable fixed point, the 
“trajectory” becomes confined to one point in space. This is trivial. If the solution is chaotic, 
the associated “trajectory” becomes confined to a two dimensional object.  The butterfly 
(figure 10) is such a two-dimensional object. It is, in fact, an extremely complicated two-
dimensional surface in three-dimensional phase space.  
 
 
19. Lorenz map: order in chaos? 
 
Although the non-periodic solution of the Lorenz (1963) model, shown in figure 9, is 
chaotic, in the sense that it is sensitively dependent on initial conditions, it does possess a 
certain degree of “order”. Referring to his figure 2 (our figure 10), Lorenz (1963) (p. 138) 
states 
 
“we find that the trajectory apparently leaves one spiral only after exceeding some critical distance 
from the centre. Moreover, the extent to which this distance is exceeded appears to determine the 
point at which the next spiral is entered; this in turn seems to determine the number of circuits to be 
executed before changing spiral again. 
 
 It therefore seems that some single feature of a given circuit should predict the same feature of 
the following circuit. A suitable feature of this sort is the maximum value of Z, which occurs when a 
circuit is nearly completed.” 
 
Schematically, the chaotic solution in terms of Z looks as is drawn in figure 11. The period 
and amplitude of the oscillations in Z seem totally erratic. Nevertheless Lorenz (1963) 
measured the amplitude of successive peaks and made a scatter plot of this amplitude as 
function of the amplitude of the previous peak and found a remarkable result, which is shown 
in figure 12 (his figure 4 on page 139). This scatter plot is known as the “Lorenz map”. 
There is almost no “thickness” to the curve represented by the dots in figure 12.  
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Figure	11.		A	schematic	graph	of	the	chaotic	solution	of	the	Lorenz	(1963)	model	(the	blue	
curve	in	figure	9).	The	amplitudes	of	successive	peaks	are	related	as	is	shown	in	figure	12.	
	

	
	
Figure	12.		Scatter	plot	of	the	height	of	successive	peaks	in	the	graph	shown	in	figure	11,	which	
is	a	schematic	representation	of	the	blue	curve	in	figure	9.		This	scatter	plot	is	now	known	as	
the	“Lorenz	map”	(page	327,	Strogatz,	1994).	See	May	(1976).	
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 Lorenz (1963) (p. 139) states that 
 
“an investigator, unaware of the nature of the governing equations, could formulate an empirical 
prediction scheme from the “data” pictured in figures 10 and 12. From the value of the most recent 
maximum of Z, values at future maxima may be obtained by repeated applications of figure 12”. 
 
Unfortunately, the time between successive peaks in figure 11 is very erratic (exercise 13c) 
and therefore not predictable! The paper by Robert May (1976) is recommended for an 
interesting discussion on discrete maps. 
 
 
20. Exercises, part 3  
 
(10)  
The total kinetic energy (K) and the total potential energy (P), associated with the 
perturbations (eq. 6) in two-dimensional convection (in which v=0) are, respectively, 
 

� 

K =
1
2

u2 + w2( )∫ dσ  ;         (102) 

 

� 

P = −
1
2
Pr θ 2∫ dσ .         (103) 

 
Express K and P in spectral space and show that K+P is conserved by the non-linear terms 
in the Lorenz model. 
 
 
(11)  
Use the expression for kinetic energy in spectral space, derived in exercise 10, to derive an 
expression for the kinetic energy in the steady state of finite amplitude convection in the 
Lorenz model. At which aspect ratio will the kinetic energy be a maximum if Ra=10000 and 
if Ra=20000? Is the equilibrium state of finite amplitude convection stable to small 
perturbations at these two combinations of values of the aspect and the Rayleigh number (use 
the result of exercise 8)? Is this aspect ratio at which kinetic energy is maximized larger or 
smaller than the preferred aspect ratio for onset of convection at the minimum critical 
Rayleigh number? What does this imply? 
 
 
(12)  
The graph in figure 12 (the “Lorenz map”) represents a scatter plot of the value of Zn+1 as a 
function of Zn in an integration of the Lorenz model when all three equilibrium states are 
linearly unstable, where Zn is the n-th local maximum value of Z(t). The straight line 
represents the line, Zn+1=Zn . According to the Lorenz map, the value of the next maximum 
(next peak in Z) is predictable. Suppose that Z0=40. For which value of n is Zn>Z0? For which 
value of n is Zn<Z0? A fixed point is found at the intersection of the Lorenz map and the line, 
Zn+1=Zn. Is this a stable fixed point? How can you deduce this from figure 12? 
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(13) (homework) 
For this exercise you need to know how to program a computer (in Python, MATLAB, 
Mathematica, C or any other suitable language). 
(a) Integrate the Lorenz (1963) equations (eqs. 87-89) in time numerically through at least 5 
non-dimensional time units. Approximate the time-derivatives with the fourth order (RK-4) 
Runge-Kutta scheme (section 22). Do this for the exact same values of ax, Ra and Pr, which 
Lorenz used to illustrate the chaotic solution of his model, i.e. ax=1/(21/2), Pr=10 and 
Ra=28Rac (Rac is defined in eq. 94). The initial condition should lie close to steady state of 
rest, (X,Y,Z) = (0,0,0), which is perturbed by putting Y=0.1 at t=0, while assuming that X and 
Z are equal to zero at t=0. 
(b) Locate local maxima of Z(t), Zn. Plot Zn+1 as a function of Zn, in other words reproduce the 
Lorenz map (figure 12; see also page 139 of Lorenz (1963), or p. 326-328 of Strogatz 
(1994)).  
(c) Now, plot the time between local maxima of Z(t) as a function of time (e.g. the time half-
way between two maxima). Discuss the plot. 
(d) Perform a second integration with a slightly different initial condition, by weakly 
perturbing X initially. Plot a measure of the separation in phase space between the two 
solutions and estimate the associated Lyapunov-exponent, defined in eq. 95 (see also p. 320-
323 of Strogatz (1994)). 
(e) Compare the “climate” of the two solutions, i.e. the time average of X, Y, and Z. You may 
have to extend your integration in time by many more than 5 non-dimensional time units to 
get a “stable” answer. What conclusions can you draw? Now, compare the “climate” of the 
absolute values of the two solutions, i.e. the time average of |X|, |Y|, and |Z|. What do you 
conclude from this? 
(f) Model climate can also be characterised by the so-called “probability distribution 
function” (“pdf”). A plot of the “pdf” as a function of X and Y gives the probability of finding 
the Lorenz model state vector in any point in X-Y plane of phase space. Plot this “pdf” and 
interpret your result in the light of (e). 
 
(14) 
What is the mathematical relation between C0  and C1 in equation 65 and Y and Z in equations 
87-89 (the Lorenz model)? This information can be used to reconstruct and visualize 
(animate) the temperature field of a numerical integration of the Lorenz model (see figure 8 
and http://www.staff.science.uu.nl/~delde102/LorenzModelTemp_2Rac.mov	).	
 
 
(15)  
The Lorenz model represents the lowest order model of convection. It describes the growth, 
when the Rayleigh exceeds the critical Rayleigh, of the amplitude of one Fourier mode in 
both the stream function and the temperature, and the interaction of this Fourier mode with 
one additional Fourier mode, which represents the modification of the horizontal-mean 
temperature field by convection.  
 If the Rayleigh number exceeds the critical value for onset of convection for two Fourier 
modes (l,n)=(1,1) and (l,n)=(2,1): what will happen? The Lorenz model does not describe 
this situation in which more than one Fourier mode or wave is linearly unstable, or “self-
excited”.  
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 If two modes grow, will this lead to a less ordered flow pattern? Observations indicate that 
this is mostly not the case (figure 3). It appears as if one Fourier mode predominates. Why is 
one discrete scale of motion selected? 
 These questions might be answered with an extension of Lorenz’s (1963), in which two 
linearly unstable (self-excited) modes (or waves) with wave vectors,  (l,n)=(1,1) and 
(l,n)=(2,1), are included inside the truncation. Which other modes would you include in this 
truncated model? How many first order ordinary differential equations would this model 
have? 
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22. Appendix to part 3: Runge-Kutta approximation to the time-derivative 
 
Suppose we have an ordinary differential equation of the type, dX(t)/dt=F(X). We then find 
X(t+Δt) by following the following recipe. 
 

� 

X0 = X t( )
X1 = X0 + F(X0)Δt /2( )
X2 = X0 + F(X1)Δt /2( )
X3 = X0 + F(X2)Δt( )
X4 = X0 − F(X3)Δt /2( )
X t + Δt( ) = X1 + 2X2 + X3 − X4( ) /3

 

 
This fourth order “Runge-Kutta” (RK-4) approximation to the time derivative is very accurate 
for sufficiently small time step. This scheme is also recommended and used by Lorenz in his 
1993-book on “The Essence of Chaos” (p. 190). 
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Part 4: Scale selection and spectral energy transfer in thermal 
convection 
By Aarnout van Delden (http://www.staff.science.uu.nl/~delde102/TinF.htm ) 
 
 
23. The question of non-linear scale selection 
 
The analysis of the stability to small perturbations of the state of rest of a stratified fluid 
indicates that, when the Rayleigh number just exceeds a minimum critical value, there is one 
(“preferred”) Fourier mode with a well-defined aspect ratio, which grows exponentially in 
time, i.e. has a positive linear growth-rate. At Rayleigh numbers relatively far above the 
minimum critical value for onset of convection many Fourier modes are self-excited 
simultaneously. Non-linear interactions between self excited modes and higher harmonics 
will become important. Will the aspect ratio of the convections cells be the same as predicted 
by linear theory? This section investigates the role of nonlinearity in scale selection by 
studying the transfer of kinetic energy between Fourier modes due to non-linear interactions.  
 The Lorenz model describes the growth of one Fourier mode in both the stream function 
and the temperature, and the interaction of this Fourier mode with another Fourier mode, 
which represents the modification of the horizontal-mean linear static temperature profile by 
convection, such that heavy cold fluid moves down, while warm light fluid moves up, 
thereby lowering the centre of gravity of the fluid layer (figure 4).  
 The Lorenz model is not able to describe the deformation, or change of form, of the finite 
amplitude convection cell, by transfer of energy to higher harmonics. Nor is it able to 
describe the transfer of energy between different scales of motion, or Fourier modes. The 
aspect ratio of the cellular motion in the Lorenz model is fixed and imposed by the value of 
the parameter, 

� 

ax = 2H /L  (eq. 69).   
 In part 4 of these notes we construct a more complex, but still low-order, model of thermal 
convection, which consists of several Fourier modes, which may simultaneously be self-
excited, i.e. have positive linear growth-rates. These modes are unstable when the amplitude 
of this mode is nearly zero. With this model we can study the following questions. If the 
Rayleigh number exceeds the critical value for onset of convection for two modes, e.g. for 
(l,n)=(1,1) and (l,n)=(2,1), what will happen? If two modes are self-excited, hence grow 
spontaneously, will this lead to a less ordered, chaotic or turbulent flow pattern? Observations 
indicate that this is mostly not the case (figure 3). It appears as if one mode predominates. 
Why is one mode selected over others?  
 The low-order model under study here simulates the interaction of two modes with 
neighbouring horizontal wave numbers, equal to j and j+1 (j≥1), which may both be self-
excited at sufficiently high Rayleigh number. The stream function patterns, corresponding to 
these two Fourier modes, are drawn in figure 13 for j=1.  
 Which other modes would you include in this truncated model so that the two chosen 
modes interact? How many first order ordinary differential equations would this model 
consist of?  
 According to the selection rule (74) two modes or waves with wave vectors, (l,n)=(j,1)  
and (l,n)=(j+1,1), cannot interact without the mediation of another mode or wave. Let us 
suppose that j=1 and that the modes, (l,n)=(j,1)=(1,1) and (l,n)=(j+1,1)=(2,1), are both self-
excited. The interaction of these modes and their mirror images in wave number space will 
excite the modes, (1,2) and (3,2). The mode (1,2) is excited through the interaction of (-1,1) 
and (2,1), while the model (3,2) is excited through the interaction of (1,1) and (2,1). Negative 
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wave number modes will also be excited, but, because of the symmetry relations, summarized 
in eqs. 79-82 at the end of section 9, equations describing the time-evolution of these modes 
do not have to be made explicit. 
 Some nomenclature: modes with n=1 are termed “single vertical modes” and modes with 
n=2 are termed “double vertical modes”. The interaction of two single vertical modes 
excites a double vertical mode, which, in turn, interacts with a single vertical mode to 
contribute to the growth or decay of other single vertical modes, but also to contribute to the 
growth or decay of “triple vertical modes” (n=3). Since triple vertical modes have relatively 
high critical modal Rayleigh numbers (the critical modal Rayleigh number increases with n6; 
see eq. 42 and exercise 3), the amplitude of these modes is so quickly reduced (by the effect 
of viscosity and molecular conduction) that interactions with triple vertical modes and even 
higher-order modes, with n>3, can be neglected.  
 
 

 
	
Figure	13.	The	stream	function	fields	corresponding	to	cellular	convection-patterns	with	
horizontal	wave	number,	l=1	(upper	panel)	and	l=2	(lower	panel).	Both	patterns	are	referred	to	
in	the	text	as	“single	vertical	modes”,	because	they	have	vertical	wave	number	n=1.	
 
 
24. Scale selection in a ten-component model of thermal convection 
 
 The above arguments are the basis for ignoring all modes with n≥3 in a low-order model 
for the interaction of two single vertical modes with “neighbouring” horizontal wave 
numbers, j and j+1 (j≥1).  
 All modes with n≥3 are excluded except the mode, 

� 

J ≡ Θ04
I , which is included to give a 

slightly more realistic representation of the horizontal-mean temperature as a function of z. 
The (0,4) mode is excited through the interaction of double vertical modes with their mirror 
images around the l-axis. Table 1 lists all possible interactions between wave modes, which 
are included inside the truncation of the 10-component model.  
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γ α β 
(0,2) (-j,1) (j,1) 
(0,2) (-j-1,1) (j+1,1) 
(0,4) (-1,2) (1,2) 
(0,4) (-2j-1,2) (2j+1,2) 
(j,1) (j+1,-1) (-1,2) 
(j,1) (-j-1,-1) (2j+1,2) 
(j+1,1) (j,-1) (1,2) 
(j+1,1) (-j,1) (2j+1,2) 
(1,2) (-j,1) (j+1,1) 

(2j+1,1) (j,1) (j+1,1) 
(j,1) (j,-1) (0,2) 
(j+1,1) (j+1,-1) (0,2) 
(1,2) (1,-2) (0,4) 
(2j+1,2) (2j+1,-2) (0,4) 
 
Table 1: Non-zero interactions taken inside 
the truncation in the ten-coefficient model. 
The interaction of wave vectors, α and β, 
contributes to wave vector, γ. 

 
 
 The model consists of 10 nonlinear ordinary differential equations describing the time-
evolution of the following Fourier coefficients: 
 

� 

A ≡Ψj,1
R ; E ≡ Θ j,1

I ; I ≡ Θ0,2
I ; 

B ≡Ψj+1,1
R ; F ≡ Θ j+1,1

I ; J ≡ Θ0,4
I ; 

C ≡Ψ1,2
R ; G ≡ Θ1,2

I ; 

D ≡Ψ2 j+1,2
R ; H ≡ Θ2 j+1,2

I . 

       (104) 

 
 With the information in table 1 it is straightforward, but tedious, to derive (from equations 
71, 73 and 76) the ten first-order ordinary differential equations that govern the time-
evolution of the amplitudes of each of the ten Fourier coefficients, listed in 104. These ten 
equations are referred to in the text as equation set 105:  
 

� 

dA
dt

=
ax jPr
πkA

2 E − π 2 Pr kA
2A − (2 j +1)π 2ax

kB
2 − kC

2

kA
2 BC − π 2ax

kD
2 − kB

2

kA
2 BD  

� 

dB
dt

=
ax ( j +1)Pr

πkB
2 F − π 2 Pr kB

2B − (2 j +1)π 2ax
kC
2 − kA

2

kB
2 AC + π 2ax

kD
2 − kA

2

kB
2 AD 

� 

dC
dt

=
ax jPr
πkC

2 G − π 2 Pr kC
2C + (2 j +1)π 2ax

kB
2 − kA

2

kC
2 AB  

� 

dD
dt

=
ax 2 j +1( )Pr

πkD
2 H − π 2 Pr kD

2D − π 2ax
kB
2 − kA

2

kD
2 AB  

� 

dE
dt

= πax jRaA − π 2kA
2E − (2 j +1)π 2axBG − (2 j +1)π 2axCF − π 2axBH − π 2axDF − 2 jπ 2axAI  

� 

dF
dt

= πax ( j +1)RaB − π 2kB
2F − (2 j +1)π 2axAG + (2 j +1)π 2axCE + π 2axAH + π 2axDE − 2( j +1)π 2axBI

� 

dG
dt

= πax jRaC − π 2kC
2G + (2 j +1)π 2axAF + (2 j +1)π 2axBE − 4π 2axCJ  

� 

dH
dt

= πax (2 j +1)RaD − π 2kD
2H − π 2axAF + π 2axBE − 4(2 j +1)π 2axDJ  

� 

dI
dt

= −4π 2I + 4 jπ 2axAE + 4( j +1)π 2axBF  

� 

dJ
dt

= −16π 2J + 8π 2axCG + 8(2 j +1)π 2axDH 	,	 	 	 	 	 	 (105) 
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where the total wave number of each mode is defined as 
 

� 

kA
2 ≡ ax

2 j2 + 1; kB
2 ≡ ax

2( j + 1)2 + 1; kC
2 ≡ ax

2 + 4; kD
2 ≡ ax

2(2 j + 1)2 + 4  .  (106) 
 
The set of ten equations (105) are solved numerically applying a fourth order Runge-Kutta 
approximation to the time derivatives (section 22). Figure 14 shows the result of an 
integration, in terms of the evolution in time of the Fourier coefficients of the streamfunction, 
A, B, C and D, for an integration with j=1, ax=1/2√2 and Pr=1, in which the Rayleigh number, 
Ra, is increased linearly in time from 0 to 25 times the critical value, Rac in the first 2.5 time 
units, and held constant at 25Rac after t=2.5. The initial state is the state of rest, which is 
perturbed by introducing small perturbations to A and B. 
 

	
	
Figure	14.	Time-evolution	of	the	Fourier	coefficients,	A	(blue),	B	(red),	C	(green)	and	
D(magenta)	of	the	ten-component	model	(eqs.	105),	with	ax=1/2√2	and	Pr=1,	in	a	numerical	
integration	with	the	state	of	rest	as	initial	condition.	During	the	first	2.5	time	units	the	Rayleigh	
number	increases		linearly	from	0	to	25	times	the	critical	value	for	onset	of	instability	of	the	
mode	corresponding	to	wave	vector,	(2,1),	corresponding	to		B	(streamfunction)	and	F	
(temperature).	Ra	is	constant	after	t=2.5.	The	domain	has	an	aspect	ratio	of	4√2,	so	that	the	
mode	(i.e.	(2,1))	has	an	aspect	ratio	of	2√2.	The	mode	with	wave	vector	(2,1)	is	the	fastest	
growing	mode	near	the	state	of	rest.	Units	are	non-dimensional.	
	
 The minimum critical value of Ra for onset of instability of the fastest growing mode, in 
this case B, is Rac≈657 (eq. 94). Indeed, we see, that B grows fastest initially (blue curve in 
figure 14). However, after t=0.17 the larger-scale mode, (1,1) (i.e. A), which has a critical 
Rayleigh number of about 1110, should grow exponentially also, at least “linearly”.  
This does not seem to materialize until after t=1.5. However, the growth of A after t=1.5 
seems to go at the cost of B. This implies that there is transition to a larger scale of motion. 
The stream function field before and after this transition is shown in figure 15. The “transfer 
of kinetic energy to larger scales”, observed in this numerical example, is in fact typical for 
two-dimensional flow. In the next section we will study this phenomenon in a little more 
detail.  
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Figure	15.	Streamfunction,	at	t=1.6	(above)	and	at	t=2.2	(below)	in	the	simulation,	illustrated	
also	in	figure	14.	Red	shading	corresponds	to	a	clockwise	circulation.	The	streamfunction	is	
scaled	with	the	steady	state	value	of	X	at	Ra=25Rac	,	in	the	Lorenz	model	(exercise	6).	The	
contour	interval	is	1.	The	coefficient,	B	in	the	10	component	model	corresponds	to	X	in	the	
Lorenz	model	with	ax=1/√2.	See	the	animation:	https://webspace.science.uu.nl/~delde102/10-
ComponentModel(Converted).mov.

	

 
 
25. Upscale kinetic energy transfer in two-dimensional convection 
 
The increase of the wavelength of two-dimensional convection cells with increasing Ra is 
consistently observed in reality. Figure 16 shows the non-dimensional wavelength (or aspect 
ratio) of convection rolls as a function of Rayleigh number for different Prandtl numbers, as 
observed in the laboratory.  
 This section demonstrates that the increase of the aspect ratio in two-dimensional 
convection is likely due to the nonlinear terms that describe the transfer of kinetic energy 
between different scales of motion. In the ten-component model, the transfer of  kinetic 
energy through the “spectrum”, which consists of only four modes, is governed by the 
nonlinear terms in the first four equations in the set of equations, 105. These equations are 
repeated below. 



	 38	

 
	
Figure	16.	Smoothed	values	of	the	aspect	ratio,	

� 

λ ,	of	two-dimensional	convection	cells,	with	error	
limits,	as	measured	by	Willis	et	al.	(1972).	Note	the	dependence	of	the	state	of	the	system	on	its	
history.	This	typical	property	of	non-linear	systems	is	called	hysteresis.	
 
 

� 

dA
dt

=
ax jPr
πkA

2 E − π 2 Pr kA
2A − (2 j +1)π 2ax

kB
2 − kC

2

kA
2 BC − π 2ax
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2
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� 

dB
dt

=
ax ( j +1)Pr

πkB
2 F − π 2 Pr kB

2B − (2 j +1)π 2ax
kC
2 − kA

2

kB
2 AC + π 2ax

kD
2 − kA

2

kB
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� 

dC
dt

=
ax jPr
πkC

2 G − π 2 Pr kC
2C + (2 j +1)π 2ax

kB
2 − kA

2

kC
2 AB

 
 

� 

dD
dt

=
ax (2 j +1)Pr

πkD
2 H − π 2 Pr kD

2D − π 2ax
kB
2 − kA

2

kD
2 AB

    (107) 
 
The importance of the non-linear terms in this set of equations, relative to the linear terms, 
increases with decreasing Prandtl number, Pr.  
 We simplify the linear terms by introducing relaxation coefficients, λA, λB,  λC, and λD,   
which serve as a parametrisation of the linear terms, i.e. the effect of viscosity and the linear 
effect of the temperature field on the velocity field. Hence we rewrite these equations as 
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� 

dA
dt

= λAA + (2 j +1)π 2ax
kC
2 − kB

2

kA
2 BC − π 2ax

kD
2 − kB

2

kA
2 BD

 
 

� 

dB
dt

= λBB − (2 j +1)π 2ax
kC
2 − kA

2

kB
2 AC + π 2ax

kD
2 − kA

2

kB
2 AD

 
 

� 

dC
dt

= λCC + (2 j +1)π 2ax
kB
2 − kA

2

kC
2 AB

 
 

� 

dD
dt

= λDD − π 2ax
kB
2 − kA

2

kD
2 AB

       (108) 
 
The relaxation coefficients correspond to the linear growth rate, σ, of eq. 39, which is also 
the subject of exercise 8. A negative relaxation coefficient implies linear damping (a linearly 
stable mode), while and positive relaxation coefficient implies linear growth (a linearly 
unstable mode or self-excited mode, which grows exponentially in time).   
 The wave numbers kA, kB,  kC, and kD, of each mode are defined in (106). For ax≈1/8 and 
j≈1 (figures 14 and 15), the wave numbers are ordered from large scale (small wave number) 
to small scale (large wave number) according to 
 

� 

kA
2 < kB

2 < kC
2 < kD

2

 
        (109)

  
Kinetic energy is “injected” into the spectrum through the self-excited modes. At modest 
Raleigh numbers this happens through the modes, A and B. The kinetic energy is then 
transferred to smaller scales of motion by triad interactions. This is in accord with 
“Richardson’s notion that large eddies are unstable (self-excited) and break up, transferring 
their energy to somewhat smaller eddies” (Pope, section 6.1.1): 
 
Big whorls have little whorls, 
Which feed on their velocity; 
And little whorls have lesser whorls, 
And so on to viscosity… 
 
 The 10-component model includes only two triad interactions. The first interaction is 
between A, B and C. The second interaction is between A, B and D.  
 Let us assume that A and B are self-excited (i.e. λA>0 and λB>0), while C and D are 
damped (i.e. λC<0 and λD<0). The amplitudes of the damped modes, C and D, will in general 
remain small, as can be verified in figure 14. Then it is possible to apply a so-called 
adiabatic elimination technique, an idea introduced by Hermann Haken (1978). This 
consists of eliminating the damped variables, assuming that they follow the self-excited 
variables “adiabatically”. In the system under study here, this means that C and D are always 
in equilibrium with A and B, which implies that the time-derivatives of C and D are zero, so 
that 
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� 

C = −(2 j +1)π 2ax
kB
2 − kA

2

λCkC
2 AB	.	       (110)

 

 
and 

 

� 

D = π 2ax
kB
2 − kA

2

λDkD
2 AB .	 	 	 	 	 	 	 	 (111) 

 
Substituting (107) and (108) into the equations for time-evolution of A and B yields 
 

� 

dA
dt

= λA + µ1B
2( )A  ,         (112) 

 
with 
 

� 

µ1 = π 4ax
2 kB

2 − kA
2( )

kA
2 (2 j +1)2 kB

2 − kC
2

λCkC
2 +

kB
2 − kD

2

λDkD
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ > 0  , 

 
and  
 

� 

dB
dt

= λB + µ2A
2( )B  ,         (113) 

 
with 
 

� 

µ2 = π 4ax
2 kB

2 − kA
2

kB
2 (2 j +1)2 kC

2 − kA
2

λCkC
2 +

kD
2 − kA

2

λDkD
2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ < 0 . 

 
Remember: λC<0 and λD<0.  
 We have thus reduced the system of four equations, which describe the streamline pattern 
in the 10-component model, to a closed system of two equations (112 and 113). Note that, 
because  µ1>0 and µ2<0, A can grow at the cost of B. In Haken’s words, mode A “enslaves” 
mode B. This implies that all kinetic energy goes to the larger scale of motion (mode A). This 
is indeed what happens in the simulation illustrated in figures 14 and 15. This is in contrast to 
Richardson’s hypothesis, that there should be a “cascade of energy to smaller scales”. 
The absence of a downscale transfer of energy is related to the impossibility of “vortex-
stretching” in two-dimensional flow, or the conservation of vorticity by the non-linear terms 
(section 26). 
 The surprising degree of order, frequently exhibited by complex non-linear systems, as the 
one studied here, is the subject of the relatively new discipline, called “Synergetics” by 
Haken (1978). Synergetics is the science explaining the formation of patterns and ordered 
structures in open non-linear systems, consisting of interacting sub-systems. These structures 
are called “dissipative structures. “Open” means that energy (heat or matter) is exchanged 
with the outside world. “Dissipative” means that the system is subject to friction or some 
other form of dissipation, such as viscosity or molecular diffusion of heat. 
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26. Spectral blocking in two-dimensional flow 
 
This section investigates the nonlinear triad interactions in the 10-component model 
describing spectral transfer of kinetic energy and shows that there is tendency to inhibit the 
net transfer of energy both to smaller and to larger scales in the 10-component model under 
study. This tendency, in fact, is generic and is consequence of the absence of vortex 
stretching in two-dimensional flow.  
 Let us go back to the set of equations (108) and assume that the relaxation coefficients are 
all equal to zero, which means that the system is frictionless and is isolated (no contact with 
the outside world), and should conserve kinetic energy, K. 
 The kinetic energy, Kγ , in a mode corresponding to wave vector, γ, is given by (exercise 
10) 
 

� 

Kγ =
1
2
kγ
2Ψγ

2.
 

 
The total kinetic energy, K, is equal to the sum of the contributions of all modes in all four 
quadrants of wave vector space. In view of the symmetry relations listed in section 9, we can 
restrict out attention to the contributions from wave vectors in one quadrant. Therefore, we 
define K as follows: 
 

� 

K ≡ KA + KB + KC + KD =
1
2
kA
2 A2 + kB

2B2 + kC
2C2 + kD

2D2( )
 

 
Let us isolate the two triad interactions in the 10-component model , i.e. the interaction 
between A, B and C and the interactions between A, B and D, which we write as two sets of 
three equations as follows. 
 

� 

dKA
dt

= (2 j +1)π 2ax kC
2 − kB

2( )ABC − π 2ax kD
2 − kB

2( )ABD
 

� 

dKB
dt

= −(2 j +1)π 2ax kC
2 − kA

2( )ABC + π 2ax kD
2 − kA

2( )ABD
 

� 

dKC
dt

= (2 j +1)π 2ax kB
2 − kA

2( )ABC
 

� 

dKD
dt

= −π 2ax kB
2 − kA

2( )ABD.
  

It can easily be seen that dK/dt=0. Kinetic energy is conserved by the non-linear terms. If 
we separate the equations governing the spectral exchange of kinetic energy in the two triad 
interactions we find for the first triad, (j,1), (j+1,1) and (1,2), 
 

� 

dKA
dt

= (2 j +1)π 2ax kC
2 − kB

2( )ABC
 

� 

dKB
dt

= −(2 j +1)π 2ax kC
2 − kA

2( )ABC 	

� 

dKC
dt

= (2 j +1)π 2ax kB
2 − kA

2( )ABC
 

 
and for the second triad (j,1), (j+1,1) and (2j+1,2) 
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� 

dKA
dt

= −π 2ax kD
2 − kB

2( )ABD
 

� 

dKB
dt

= π 2ax kD
2 − kA

2( )ABD
 

� 

dKD
dt

= −π 2ax kB
2 − kA

2( )ABD.
 

 
Using the inequality (109) it is easily seen that the middle scale (B) in both triad interactions 
either looses or gains energy from the both larger scale (A) and the smaller scale (C or D). 
This phenomenon is called “spectral blocking”. Note that, for ax=1/2√2, the ordering of the 
total wave numbers differs from the ordering given in (109) if j>4. This has no consequences 
for the second triad, but does have consequences, because kC

2 is be smaller than kB
2. 

 In the year 1953 R. Fjortoft and G.K. Batchelor independently showed that spectral 
blocking is due to the simultaneous conservation of kinetic energy and vorticity by the non-
linear advection terms in two-dimensional flow. Vorticity is defined as the curl of the 
velocity vector:  
 

  

� 

! 
ω ≡

! 
∇ × ! v =

ˆ i ˆ j ˆ k 
∂
∂x

∂
∂y

∂
∂z

u v w

=
∂w
∂y

−
∂v
∂z

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ˆ i +

∂u
∂z

−
∂w
∂x

⎛ 
⎝ 

⎞ 
⎠ 

ˆ j +
∂v
∂x

−
∂u
∂y

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ˆ k 	 	 (114)	

	
Here, 

� 

ˆ i ,  ˆ j  and ˆ k  are unit vectors in the x, y and z directions, respectively. In the case treated in 
this section the flow restricted to the x-z plane. The associated vorticity, η, is 
	

� 

η ≡
∂u
∂z

−
∂w
∂x

= −
∂2ψ
∂x2

+
∂2ψ
∂z2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 	 	 	 	 	 	 	 (115) 

 
According to eq. 54 and in the absence of buoyancy-forcing and dissipation due to viscosity, 
vorticity is conserved by fluid parcels:

  

� 

d∇2ψ
dt

=
dη
dt

= 0	.	
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27. Exercises, part 4  
 
 
(16)  
The total enstrophy (E) (the area integrated square-vorticity) in two-dimensional flow is  
 

� 

E =
1
2

η2( )∫ dσ  

 
(see lecture 9). Express E in terms the Fourier coefficients of the stream function (see 
exercise 10). In section 26 it is shown that kinetic energy is conserved in the two triad 
interactions in the 10-component model. Show that enstrophy is also conserved in these two 
triad interactions. Assume that mode B in this model possesses the lowest critical Rayleigh 
number. Show that the middle scale in both triad interactions in the 10-component model 
looses/gains more kinetic energy to/from larger scale than to/from the smaller scale 
 
(17) 
For this exercise you are given the python-code of the 10-component model of two-
dimensional convection, which integrates the twelve equations (105), and asked to install and 
run this code on your computer. Oscillations with a period in the range between 1 and 10 
non-dimensional viscous time-units (H2/ν) are observed in a layer of fluid with low Pr and 
Rayleigh numbers which are just super-critical to several times super-critical (Krishnamurti, 
1973). The 10-component model also exhibits oscillations at low Pr (=0.1), with ax=1/2√2 
and for Rayleigh number 1.5 times supercritical.  
(a) Can you qualitatively foresee the existence of these oscillations from eqs. 112 and 113?  
(b) Investigate these oscillations in the 10-component model (105). Are the oscillations 
qualitatively in accord with your predictions based on eqs. 112 and 113?  
(c) Do you get oscillations with periods similar to periods observed by Krishnamurti? 
(d) Is this solution “chaotic”? If so, why? 
(e) Make a scatter plot (“map”) of the peak-values of A as a function of the previous peak-
value of A. Compare this “map” with the Lorenz map (figure 12).  
(f) Plot the time between successive peaks as a function of time half-way these peaks. What 
do you conclude from this? 
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Part 5: Pattern formation in thermal convection 
By Aarnout van Delden (http://www.staff.science.uu.nl/~delde102/TinF.htm ) 
 
 
29. The horizontal pattern of thermal convection 
 
Our attention up to this point has been restricted to two-dimensional thermal convection, or 
convection in the form of rolls (upper panel of figure 1). Three-dimensional convection 
patterns, such as hexagons, are observed just as frequently as rolls. Therefore, it is important 
to address the interesting question of convection pattern selection. Can we reproduce 
observed three-dimensional convection patterns with the model equations, which are 
introduced in sections 2 and 3? Can we use these equations to understand why and under 
which circumstances a particular highly ordered flow pattern appears in the fluid system 
under study here? Thermal convection between parallel horizontal rigid boundaries is a 
prototype problem in studies addressing the question of growth and form in physical, 
chemical and biological systems with many degrees of freedom. See for example the seminal 
book, entitled “On Growth and Form”, by D’Arcy Wentworth Thompson (1942) or the 
popular book by Philip Ball, entitled “Shapes: Natures Patterns”, published in 2009. We will 
take a peek at this field of study in this part of these lecture notes.  
 Thermal convection is observed to take place mostly in the form of regular cellular 
patterns. Figure 2, for example, demonstrates that convection in the atmosphere is observed 
mostly as cloud streets (rolls), open convection cells, with clouds (upward motion) at the 
edge of the cell and downward motion in the middle, and closed convection cells with clouds 
in the middle and downward motion at the edges.  
 The question of convective pattern selection is very difficult because it cannot be solved 
by linearising the governing equations. It is an intrinsically non-linear mathematical problem. 
Nevertheless, with some simplifications we can get a long way.  
 First we discuss some phenomenological aspects of this question. For simplicity we begin 
by assuming that the fluid layer undergoing convection is tessellated into a regular array of 
identical convection cells. There are many possible vertical velocity fields that are periodic in 
both horizontal directions. The horizontal field of vertical velocity in the fluid layer can be 
organised into parallel strips, triangles, squares, rectangles and hexagons. A convection 
pattern consisting of equilateral triangles is pretty unlikely, except if it is forced to be this 
way by the boundaries of a triangular domain. A square convection pattern will be preferred 
over a rectangular convection pattern, except if boundary conditions impose otherwise. But 
even squares do not seem to be very probable, as is explained in the following. 
 

 
 

Figure	17.	An	arrangement	of	circles	inside	a	given	boundary	such	that	no	two	circles	overlap	
and	some	(or	all)	circles	are	mutually	tangent.	The	hexagonal	packing	is	closest	(most	efficient)	
because	the	area	covered	by	circles	divided	by	the	total	area	is	a	minimum	(=π/(2√3)=0.91). This 
ratio in the case of square packing (π/4=0.79). 
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 Let us assume that convection starts as a series of updraughts and compensating 
downdraughts. The updraughts will probably be circular in the horizontal plane. This is 
because a circle has a minimum circumference for a given area. Circular updraughts, 
therefore, are probably less susceptible to diffusive dissipation. Suppose, for simplicity, that 
all circular updraughts in the fluid layer are identical, having a fixed radius and intensity. 
How will these updraughts be organised? Probably as closely packed as possible. The densest 
packing of circles in the plane is the hexagonal lattice of the bee’s honeycomb (figure 17). 
One must of course allow for downward motion in between the circular upward motion to 
satisfy mass balance. The intensity of the compensating downward motion decreases with 
increasing spacing of the circular updraughts. An optimal spacing of circular updraughts 
might exist, which depends on minimizing the difference between the maximum updraught 
velocity and the minimum downdraught velocity, again in order to minimize diffusive 
dissipation. In any case, the result is a series of hexagonal convections cells with upward 
motion in the middle and downward motion in the periphery. This convection pattern would, 
in meteorology, be referred to as a closed convection cell, or “l-cell” in physics. The sense of 
the circulation can also be the reverse, which would result in a so-called “open convection 
cell” in meteorology, or “g-cell” in physics.  

 

 
Figure	18.	The	hexagonal	pattern	of	w	according	to	eq.	116,	with	l=m=1,	and	a	plus	sign	in	front	
of	the	second	term	ay=√3ax	.	The	upper	panel	shows	an	up-hexagon	(eq.	116a).	The	area	
covered	by	circular	updraught	divided	by	the	total	area	is	equal	to	0.4.	The	lower	panel	shows	a	
down-hexagon	(eq.	116b).		



	 47	

 A hexagonal pattern of the vertical velocity, which fulfils continuity, is described by  
 

� 

w = cosπaxlxcosπaymy +
1
2
cos2πaxlx   (up-hexagon)    (116a) 

� 

w = −cosπaxlxcosπaymy −
1
2
cos2πaxlx  (down-hexagon) .   (116b) 

� 

w = −cosπaxlxcosπaymy +
1
2
cos2πaxlx   (up-hexagon)    (116c) 

� 

w = cosπaxlxcosπaymy −
1
2
cos2πaxlx  (down-hexagon) .    (116d) 

 
with  
 

� 

ay =
2H
Ly

= 3ax  and ax =
2H
Lx

=
1

2 2
 ,      (117) 

 
so that 

� 

Ly = 3Ly (Palm, 1960). Note that the sign in front of the second term (the roll 
pattern) determines whether the result is an up-hexagon (+) or a down-hexagon (-). 
 Figure 18 shows up- and down-hexagons for l=1 and m=1, according to eq.116a,b. While 
the updraught is circular, the downdraughts in between appear triangular.  
 The hexagonal convection pattern consists of a superposition of two Fourier modes with 
identical total horizontal wave numbers, representing two patterns: a chequerboard 
convection pattern (figure 19, left panel), with alternating square up- and down draughts (the 
first term on the right hand side of 116), and two rolls aligned along the y-axis (figure 19, 
right panel).  The first step to tackle the question of plan-form-selection in thermal 
convection is to formulate a low order-model of hexagonal convection, which includes the 
two Fourier modes in eq. 116.  
 

 
Figure	19.	Left	panel:	a	square	(chequerboard)	pattern	of	w,	according	to	the	first	term	on	the	
r.h.s.	of	eq.	116,	with	l=m=1.	Note	that	the	pattern	of	squares	does	not	correspond	to	the	square	
packing	shown	in	figure	17.	Right	panel:	a	two-dimensional	pattern	of	w,	according	to	the	
second	term	on	the	r.h.s.	of	eq.	116,	with	l=2	and	m=0	.	In	both	cases	the	domain	is	a	square	

� 

(ax = ay =1/2 2) .	Updraughts	and	downdraughts	cover	equal	areas.	In	figure	18	the	domain	is	
rectangular,	out	of	necessity	to	fit	in	a	hexagon.	
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30. Fourier representation in three spatial dimensions 
 
The three-dimensional field vertical velocity field can be expanded in a Fourier series as in 
eq. 61: 
 

� 

w x,y,z,t( ) = Wα
α
∑ (t)Sα (x,y,z)  .       (118) 

 
Here 

� 

Wα 	is a time-dependent	complex Fourier coefficient, and the basis-functions, 
 

� 

Sα (x,y,z) = exp iπ axlα x + aymα y + nα z( ){ } .     (119) 
 

� 

α
∑ means a sum over all integral lattice-points in the volume, 

� 

α = (lα ,mα ,nα ) . The 

parameters 

� 

ax 	and	

� 

ay  are a measures of the aspect ratio of the three-dimensional domain of 
computation: 
 

� 

0 ≤ x ≤ Lx /H; 0 ≤ y ≤ Ly /H,       (120) 
 
so that 
 

� 

ax =
2H
Lx

; ay =
2H
Ly

.         (121) 

 
Because boundary conditions are periodic, this domain may be repeated in both horizontal 
directions ad infinitum, so as to obtain a regular array of cells with a prescribed wavelength. 
 The orthonormality of the basis functions, 

� 

Sα ,	is expressed as 
 

� 

Sα∫ Sβ
*dσ = δα ,β ,         (122) 

 
where the asterisk designates a complex conjugate, while δ is the Kronecker delta. The 
integration extends over the region  
 

� 

0 ≤ x ≤ 2
ax

,  0 ≤ y ≤ 2
ay

,  0 ≤ z ≤ 2 ,       (123) 

 
and dσ is a volume element divided by the total volume, 

� 

σ = 8 /(axay ).  
 If the following wave vectors are taken inside the truncation of the low-order model: 
 
(±1,±1,±n), (0,±2,±n) with n=1,2,3…Nmax.      (124) 
 
A hexagonal pattern is obtained if 

� 

ay = 3ax . A square pattern is obtained if 

� 

ay = ax  while 
ignoring the wave vector, (0,±2,±n). A roll convection pattern is obtained by ignoring 
(±1,±1,±n). An important property of the model in the case that 

� 

ay = 3ax  is that the two 
Fourier modes, (±1,±1,±n) and (0,±2,±n), have identical horizontal wave numbers. This 
implies that both Fourier modes have the same critical Rayleigh number for onset of 
convection and will therefore grow with the same linear growth rates. 
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31. The nonlinear equations for three-dimensional convection 
 
The fundamental equations for shallow convection, including the Boussinesq approximation, 
are (sections 2 and 3) 
 

� 

∂u
∂t

+ u ∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

= −
1

ρref
∂p'
∂x

+ ν∇2u ;     (125a) 

 

� 

∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z

= −
1

ρref
∂p'
∂y

+ ν∇2v  ;     (125b) 

 

� 

∂w
∂t

+ u ∂w
∂x

+ v ∂v
∂y

+ w ∂w
∂z

= −
1

ρref
∂p'
∂z

+ gαT '+ν∇2w  ;    (125c) 

 

� 

∂T '
∂t

+ u ∂T '
∂x

+ v ∂T '
∂y

+ w ∂T '
∂z

= Γw +κ∇2T '       (126) 

 

� 

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0  (continuity equation);      (127) 

 
From (125a,b,c) and (126) it is possible to derive two new governing equations, one for the 
vertical component of the vorticity-vector (see eq.114), 
 

� 

ζ =
∂v
∂x

−
∂u
∂y  ,          (128) 

 
and one for the vertical velocity, w, thereby eliminating p’. The latter equation is the (non-
linear) version of equation 22.   
 The vorticity equation is found by taking the partial derivative with respect to y of (125a) 
and subtracting the result from the partial derivative with respect to x of (125b). In terms of 
the following units of length {L}, time {t} and temperature {T}, 
 

� 

L{ } = H; t{ } =
H2

κ
; T{ } =

κν
gαH 3  ,       (129) 

 
the equations are 
 

� 

dζ
dt

= ζ
∂w
∂z

−
∂w
∂x

∂v
∂z

+
∂w
∂y

∂u
∂z

+ Pr∇2ζ ,      (130) 

 
and 
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� 

d∇2w
dt

= 2 ∂
2u

∂z2
− 2 ∂2u

∂x∂z
− ∇2u

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
∂w
∂x

+ 2 ∂
2v

∂z2
− 2 ∂

2w
∂x∂z

− ∇2v
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
∂w
∂y

− ∇2w ∂w
∂z

+2 ∂2u
∂y∂z

−
∂2w
∂x∂y

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
∂v
∂x

+ 2 ∂2v
∂y∂z

−
∂2w
∂y2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
∂v
∂y

+2 ∂2u
∂x∂z

−
∂2w
∂x2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
∂u
∂x

+ 2 ∂2v
∂x∂z

−
∂2w
∂x∂y

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
∂u
∂y

+ Pr∇H
2 θ + Pr∇4w

 (131)

 

 
The Prandtl number (Pr) is defined in (60). Equation 131 is the full non-linear version of 
equation 22. 

� 

∇h
2 	is defined in eq. 23. 

 The three-dimensional non-dimensional version of the temperature equation is (see eq. 17 
and 58) 
 

� 

dθ
dt

= Raw + ∇2 θ − θ (z)( )        (132) 

 
Ra is the Rayleigh number (eq. 59). The parameter, 

� 

θ (z), is new, and is explained in section 
32. 
 Note that 
 

� 

d
dt

=
∂
∂t

+ u ∂
∂x

+ v ∂
∂y

+ w ∂
∂z .        (133) 

 
 The top and bottom horizontal boundaries are assumed to be rigid, stress-free and perfectly 
conducting, as in section 4: 
 

� 

w = 0; ∂u
∂z

=
∂v
∂z

= 0; θ = ∂2θ
∂z2 = 0.       (134) 

 
 
32. Introducing vertical asymmetry 
 
In section 31we have secretly introduced a z-dependent static temperature distribution 

� 

θ 
(z), which may deviate from linearity, such as imposed by eq. 18 when Γ=constant, thus 
making the static reference state (the state of rest) vertically asymmetric. Enok Palm (1960) 
discovered that such an asymmetry plays a leading role in convection pattern selection.  
 The static state obeys the following equation: 
 

� 

∇2(θ − θ (z)) = 0  or 

� 

θ = θ (z) .       (135) 
 
Remember that θ is the temperature perturbation relative to a static state in which temperature 
depends linearly on height (eq. 18). In other words, 

� 

θ (z) represents the deviation from 
linearity of the static state temperature profile. In the atmosphere this might be due to net 
absorption or emission of radiation, latent heat release in the convective layer due to 
condensation of water vapour in the updraught. The static state temperature profile may also 
deviate from linearity due to non-stationary temperature at the boundary. In the example 
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shown in figure 2, the layer of air undergoing convection flows southward over a sea surface, 
which becomes progressively warmer. For simplicity this effect can be modeled by assuming 
that the temperature at the lower and upper boundary increases at a constant rate, Q, 
according to 

� 

θ = Qt . The deviation of the static temperature profile from linearity will be 
governed by, 
 

� 

∂θ
∂t

=
∂2θ
∂z2

 with 

� 

θ = Qt  at z=0 and z=1.      (136) 

 
The solution is 
 

� 

θ = Qt +
Q
2
z z −1( ) .         (137) 

 
The deviation from linearity of θ is determined by the quadratic dependence on z. If Q>0 the 
static temperature profile is concave, while if Q<0 the static temperature profile is 
convex. Concave means that the θ decreases most strongly with z at z=0.  
 We do not want to be too specific about the process which maintains the static temperature 
profile. Hence we will simplify matters by just prescribing the nonlinear dependence of the 
static temperature profile by a function of z as 		
	

� 

θ (z) = C sinπz ,	 	 	 	 	     (138) 
	
so that, the static temperature profile is concave if C<0, while the static temperature profile is 
convex if C>0. This approach can easily be assimilated with the Fourier decomposition of the 
variables (sections 30 and 33). 
	
	
33. Fourier transformation of the temperature equation 
	
The method of transforming the equations to normal mode form will be illustrated in detail in 
this section with the temperature equation (132). The variables are written in Fourier series as 
follows. 
 

� 

u
v
w
ζ
θ

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ ⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

=

Uα t( )
Vα t( )
Wα t( )
Zα t( )
Θα t( )

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ ⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

Sα (x,y,z)
α
∑  ,        (139) 

 
as in eq. 118. Uα, Vα, Wα, Zα, and Θα are a time-dependent	complex Fourier coefficients, or 
amplitudes, and Sα(x,y,z)	is defined by eq. 119. 
 The definition of the vertical component of the vorticity (eq. 128) and the continuity 
equation (eq. 127) are linear equations. The Fourier transformation of these equations is easy, 
resulting in the following diagnostic relations. 
 

� 

Uα =
−axnα lα
qα
2 Wα +

aymα

πqα
2 iZα ;       (140) 
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� 

Vα =
−aynαmα

qα
2 Wα −

axlα
πqα

2 iZα ,       (141) 

 
where 
 

� 

qα
2 = ax

2lα
2 + ay

2mα
2          (142) 

 
is the total horizontal wave number. The total vertical wave number is 
 

� 

kα
2 ≡ π 2qα

2 + π 2nα
2  .         (143) 

 
Making the temperature eq. 126 non-dimensional, using the units of time, length and 
temperature given in (129), yields 
 

� 

∂θ
∂t

= −u ∂θ
∂x

− v ∂θ
∂y

− w ∂θ
∂z

+ Raw + ∇2 θ − θ ( )      (144) 

 
Fourier transforming this equation entails that we first substitute 139 and then make use of 
the orthonormality of the basis functions (Sα(x,y,z)) (eq. 122). The advection terms (the first 
three terms on the r.h.s. of eq.144) can expressed as 
 

� 

−iπaxlαUβΘα − iπaymαVβΘα − iπnαWβΘα{ }
α ,β
∑ Sα Sβ  ,    (145)  

 
where 

� 

α ,β
∑ is a double sum over all wave vectors, α and β. Substitution of (140) and (141) in 

(145), so as to eliminate 

� 

Uβ  and	

� 

Vβ , yields 
 

� 

π
nβ lα lβax

2 + mαmβay
2( )

qβ
2 − nα

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ α ,β
∑ iWβΘα Sα Sβ +

ax
2ay
2

qβ
2 lαmβ − lβmα( )ZβΘα Sα Sβ .  

            (146) 
 
We now use the property of orthonormality of Sα	(122). Multiplying both sides of (144) by 

� 

Sγ
*  and	integrating	over	the	volume	dσ, using (122), we obtain the spectral form of the 

temperature equation, which consists of a system of prognostic quations for the Fourier 
coefficients (amplitudes) of the temperature for each wave vector, 

� 

γ = (lγ ,mγ ,nγ ): 
 

� 

dΘγ

dt
= πLγαβ iWαΘβ + Mγαβ iZαΘβ{ } + Ra

α ,β
∑ Wγ − kγ

2 Θγ − Θ γ( ),   (147) 

 
where the coupling coefficients (or interaction coefficients) are defined as 
 

� 

Lγαβ ≡
nβ lα lβax

2 + mαmβay
2( )

qβ
2 − nα

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
δα ,β  ,      (148) 
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and 
 

� 

Mγαβ ≡
ax
2ay
2

qβ
2 lαmβ − lβmα( )δα ,β  .       (149) 

 
The coupling coefficients are zero unless the following selection rule (in vector form) is 
satisfied. 
 
α+β=γ  .          (150) 
 
 
34. Three-dimensional poloidal flow 
 
The spectral form of the vorticity equation (130) can also be found, following the method 
described in the previous section. The result will not be written out in full here because, for 
simplicity and on good grounds, it is easily observed that the transformed vorticity equation 
does not contain a linear term, which may lead to spontaneous growth of the spectral 
amplitudes of the vorticity. In other words, the Fourier coefficients of the vorticity, 

� 

Zα  (eq. 
139), are never self-excited. The coefficients, 

� 

Zα , can grow only through nonlinear 
interactions. Therefore, we will henceforth neglect the coefficients, 

� 

Zα , i.e. assume they 
remain equal to zero. This approximation, which greatly reduces the number of degrees of 
freedom in the system, represents an extreme application of adiabatic elimination (section 
25). It implies that the fluid motion is fixed completely by the vertical velocity, w. The other 
two velocity components, u and v, can be retrieved from the following two diagnostic spectral 
equations, which are derived from eqs. 140 and 141, assuming that 

� 

Zα = 0. 
 

� 

Uα =
−axnα lα
qα
2 Wα  and 

� 

Vα =
−aynαmα

qα
2 Wα .      (151) 

 
This type of flow is called “poloidal”.  
 For poloidal flow, i.e. with 

� 

Zα = 0 , the spectral form of the temperature equation (147) 
becomes 
 

� 

dΘγ

dt
= πLγαβ iWαΘβ{ } + Ra
α ,β
∑ Wγ − kγ

2 Θγ − Θ γ( ),    (152) 

 
while the spectral form of the vertical velocity equation (131) is 
 

� 

dWγ

dt
= πNγαβ iWαWβ{ } + Pr

π 2qγ
2

kγ
2

α ,β
∑ Θγ − Pr kγ

2Wγ ,    (153) 

 
with the interaction coefficient, 
 

� 

Nγαβ ≡
kβ
2

kγ
2qα
2qβ
2 2nα ax

2lα lβ − ay
2mαmβ( )2 + qβ

2nα − qα
2nβ( ) ax2lα lβ − ay

2mαmβ( ) − nγ qα2qβ2⎧ ⎨ ⎩ 
⎫ ⎬ ⎭ 
δα ,β . 

            (154) 
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35. Boundary conditions and symmetry relations  
 
In order to satisfy the upper and lower boundary conditions on temperature and vertical 
velocity (66), the Fourier coefficients have to satisfy the following symmetry relations. 
 

� 

Wl,m,−n
R = −Wl,m,n

R ; Wl,m,−n
I = −Wl,m,n

I ;      (155a) 

� 

Θl,m,−n
R = −Θl,m,n

R ; Θl,m,−n
I = −Θl,m,n

I ;      (155b) 
 
This means that all coefficients with n=0 are zero. 
 The fields in “physical space” are real, of course, which means that (see eqs. 78 and 79) 
 

� 

Wl,m,n
R = W− l,−m,−n

R ; Wl,m,n
I = −W− l,−m,−n

I ;      (156a) 

� 

Θl,m,n
R = Θ− l,−m,−n

R ; Θl,m,n
I = −Θ− l,−m,−n

I ;      (156b) 
 
These expressions imply the following additional symmetry relations: 
 

� 

Wl,m,n
R = −W− l,−m,n

R ; Wl,m,n
I = W− l,−m,n

I ;      (157a) 

� 

Θl,m,n
R = −Θ− l,−m,n

R ; Θl,m,n
I = Θ− l,−m,n

I ;      (157b) 
 
From this it can be deduced that 
 

� 

W0,0,n
R = 0 ; 

� 

Θ0,0,n
R = 0         (158) 

 
As a result of the above symmetry relations, only the equations for the evolution of the 
coefficients in one quarter of the wave vector volume have to be explicitly integrated. 
Furthermore, if the horizontal dependence of w and θ is represented by a cosine series, as in 
eq, 116, we have 
 

� 

Wl,m,n
R = Wl,−m,n

R = W− l,m,n
R ; Wl,m,n

I = −Wl,−m,n
I = −W− l,m,n

I ,    (159) 
 
and analogous relations for 

� 

Θγ
R  and 

� 

Θγ
I . All this implies that 

 

� 

Wγ
R = 0  and 

� 

Θγ
R = 0 .         (160) 

 
This means that we only need to explicitly solve the equations for one octant of wave vector 
space. We choose: l≥0, m≥0 and n>0. 
 
 
36. A low-order model of poloidal convection: plan-form selection  
 
In this section we study plan-form selection in thermal convection between rigid perfectly 
conducting horizontal plates in a highly truncated low-order model of poloidal convection. 
The model is based on eqs. 152 and 153. 
 Let us take the following wave vectors inside the truncated Fourier series of w and θ,  
 
(±1,±1,±1) and (0,±2,±1)        (161) 
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so that a hexagonal pattern is obtained if ax=√3ay (eqs. 116-117), a square pattern is obtained 
if ax=ay while neglecting 

� 

(0,±2,1) (figure 19), and a roll pattern is obtained by neglecting 

� 

(±1,±1,±1). 
 An important property of the hexagonal pattern is that it is the result of superposing two 
Fourier modes with identical horizontal wave number, q2=ax

2l2+ay
2m2. These modes, 

therefore, have identical critical modal Rayleigh numbers (see exercise 3). Hence these 
modes will grow with identical linear growth-rates.  
 Let us construct a low-order model of poloidal convection, which consists of the following 
wave vectors 
 
(±1,±1,±1) and (0,±2,±1) with n=1,2       (162) 
 
This means that the field of motion is described with only 4 wave vectors. In addition to this, 
we take (0,0,±n), with n=1,2,3,4, inside truncation of the Fourier expansion of the 
temperature, in order to represent the horizontal average temperature distribution (the thermal 
stratification and its modification by convection). All interactions with waves outside the 
truncation are neglected. 
 All possible wave vector interactions are listed in table 2. 
 

 
Table	2:	Non-zero	interactions	taken	inside	the	truncation	in	the	low	order	model	of	poloidal	
convection.	The	interaction	of	wave-vectors α and β contributes	to	the	wave-vector	γ.	
Interactions	fall	into	the	following	3	classes.	(1)	Wave-wave	interactions,	which	contribute	to	
the	horizontal	mean	state;	(2)	wave-mean	interactions,	which	contribute	to	the	waves;	(3)	
wave-wave	interactions,	which	contribute	to	the	waves	(van	Delden,	1988).	
 
 It is straightforward, but admittedly tedious, to derive the model equations explicitly from 
eqs 152 and 153, using the definitions of the interaction- or coupling coefficients 148 and 154 
If it is assumed that 

� 

ax
2 = 3ay

2 = 3a2, the twelve first order ordinary differential equations are 
given below. 
 
 

� 

dΘ111
dt

= −
3
2
πW111Θ022 −

3
2
πW021Θ112 + πΘ001W112 − 2πΘ002W111 − 3πΘ003W112 + RaW111 − π 2 4a2 +1( )Θ111

� 

dΘ021
dt

= −3πW111Θ112 + πΘ001W022 − 2πΘ002W021 − 3πΘ003W022 + RaW021 − π 2 4a2 +1( )Θ021 
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� 

dΘ112
dt

=
3
2
πW021Θ111 +

3
2
πW111Θ021 + πΘ001W111 − 3πΘ003W111 − 4πΘ004W112 + RaW112 − π

2 4a2 + 4( )Θ112

� 

dΘ022
dt

= 3πW111Θ111 + πΘ001W021 − 3πΘ003W021 − 4πΘ004W022 + RaW022 − π 2 4a2 + 4( )Θ022  

� 

dΘ001
dt

= −4πW111Θ112 − 4πW112Θ111 − 2πW021Θ022 − 2πW022Θ021 − π
2 Θ001 − Θ 001( )  

� 

dΘ002
dt

= 8πW111Θ111 + 4πW021Θ021 − 4π
2Θ002 

� 

dΘ003
dt

= 12πW111Θ112 +12πW112Θ111 + 6πW021Θ122 + 6πW022Θ021 − 9π
2Θ003 

� 

dΘ004
dt

= 16πW112Θ112 + 8πW022Θ022 −16π
2Θ004  

� 

dW111
dt

= − 3
2
πW022W111 −

3
2
πW021W112 + 4a2 Pr

4a2 +1
Θ111 −π

2 Pr(4a2 +1)W111
 

� 

dW021
dt

= −3πW112W111 +
4a2 Pr
4a2 +1

Θ021 − π
2 Pr 4a2 +1( )W021 

� 

dW112
dt

= 3π 4a2 +1
4a2 + 4

W111W021 + 4a2 Pr
4a2 + 4

Θ112 −π
2 Pr(4a2 + 4)W112  

� 

dW022
dt

= 3π 4a
2 +1

4a2 + 4
W111
2 +

4a2 Pr
4a2 + 4

Θ022 − π 2 Pr 4a2 + 4( )W022    (163) 

 
 
The commas in the subscripts and the superscripts have been omitted to save space. The 
hexagonal solution is equivalent to having, 
 

� 

Θ111 = Θ021; Θ112 = Θ022; W111 = W021; W112 = W022.    (164) 
 
When substituting these equalities into the equation set (163) it is found that, 
 

� 

dΘ111
dt

=
dΘ021
dt

; dΘ112
dt

=
dΘ022
dt

; dW111
dt

=
dW021
dt

; dW112
dt

=
dW022
dt

.  (165) 

 
This implies that (164) is a solution of the model. Unfortunately, it is not possible to obtain a 
general analytical expression for the coefficients, belonging to this solution, as a function of 
the parameters, a, Ra, Pr and 

� 

Θ 001. 
 In this model the system can “choose” between a hexagon with upward flow in the centre 
(called “up-hexagon” or “l-cell”) or downward flow in the centre (called “down-hexagon” or 
“g-cell”), or a roll, both with a non-dimensional wavelength (aspect ratio) equal to a-1.  
 The horizontal-mean temperature, which depends only on height and time, is determined 
by the coefficients, Θ001, Θ002, Θ003  and Θ004, which depend on time, and the constant value of 
the imposed, or prescribed, coefficient,

� 

Θ 001, as follows. 
 

� 

θ t,z( ) = −2 (Θ001 + Θ 001)sinπz + Θ002 sin2πz + Θ003 sin3πz + Θ004 sin4πz{ } . 
            (166) 
 While the model itself can generate a horizontal mean temperature profile with vertical 
gradient which is vertically asymmetric about mid-level, such a temperature profile can also 
be imposed, by specifying the value of 

� 

Θ 001. A positive value of 

� 

Θ 001 will make the static 
horizontal-mean temperature profile hydrostatically most unstable at the lower boundary, 
while a negative value of 

� 

Θ 001 will make the static horizontal-mean temperature profile 
hydrostatically most unstable at the upper boundary. The adjective, “static” stands for “in the 
absence of convection”. 
 The model equations are integrated in time with the fourth order Runge-Kutta scheme 
(section 22). The basic version of the script is given in section 40. A large number of 
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integrations (nrun_len=250 in the script), lasting 25 time units, are performed for nearly 
identical initial conditions. The values of 

� 

Θ 001(=0), Ra, Pr and a are identical in the first set 
of 250 runs (see the caption of figure 19). Subsequently, another two set of 250 runs are 
performed for

� 

Θ 001=500 and for 

� 

Θ 001=-500, respectively, with identical values of Ra, Pr and 
a.  
 The initial condition is a perturbed state of rest. The perturbation consists of a random 
number between -0.1 and +0.1 (negative or positive!) added to the initial values (=zero) of 
the amplitudes, W111 and W021, using the Numpy random number generator. In meteorology 
this technique is called “ensemble forecasting” 1.   
 For Pr=5, Ra=5000 and a=1/(2√2), for example, the model finds a steady state solution 
well within the prescribed length of time of the run (25 time units). When 

� 

Θ 001=0 the set of 
250 solutions consists of a collection of the following three basic steady solutions: rolls, 
down hexagons and up-hexagons, which are approximately equally probable. The roll 
solution in the case 

� 

Θ 001=0 is identical to the finite amplitude solution of the Lorenz (1963) 
model (exercise 9). The probability of up-hexagons increases with increasing 

� 

Θ 001>0, at the 
cost of the probability of down-hexagons. This result implies that a static temperature profile 
with the largest hydrostatic instability at the lower boundary promotes up-hexagons! Why is 
this? We do not know (yet).  
 It appears that the “volume” of the “basin of attraction” of up-hexagons in the low-order 
model increases with increasing positive 

� 

Θ 001. This idea might be tested by plotting the 
position of the random initial state in phase space, while using colours to distinguish between 
the three possible final steady state solutions: rolls (green), up-hexagons (blue) and down-
hexagons (red). Because the initial condition depends only on W111 and W021, such a scatter 
plot can be restricted to the plane, W111 versus W021. This is left as an exercise (exercise 22). 
 Figure 20 shows the steady state horizontal-mean temperature distribution at the end of a 
run corresponding to  (a) rolls, (b) up-hexagons and (c) down-hexagons for Ra=5000, Pr=5, 
a=1/(2√2)	and 

� 

Θ 001=0. Henceforth “the horizontal-mean temperature distribution” is 
referred to, in short, as the “temperature profile”.  
 At initial time the temperature profile is linear. Convection, which consists of upward 
warm currents and downward cold currents, distorts this temperature profile. As expected, 
warming occurs above mid-level, while cooling occurs below mid-level. The intensity of the 
warming versus the intensity of the cooling is symmetric about mid-level only in the case of a 
flow pattern consisting of two-dimensional convection cells, i.e. convection rolls. The 
average temperature of the fluid layer at the end of the run in the case of convection rolls is 
identical to the imposed average temperature of the fluid layer in the initial state of rest, i.e. -
2500 non-dimensional temperature units.   
 In the case of steady three-dimensional convection, however, the intensity of warming and 
cooling is not symmetric about mid-level. Steady down-hexagons warm the upper half the 
fluid layer more than they cool the lower half of the fluid layer, while steady up-hexagons 
warm the upper half the fluid layer less than they cool the lower half of the fluid layer.  This 
leads to a very remarkable conclusion. The flow pattern determines the average 
temperature of the fluid. Net warming occurs if the flow-pattern consists of down hexagons 
and net cooling occurs if the flow-pattern consists of up hexagons! 
 At Ra=5000, Pr=5 and a=1/(2√2),	the average temperature in the final steady state is equal 
to -2796 units in the case of steady convection in form of up-hexagons, 296 units lower than 
the initial average temperature (-2500 units). In the case of steady convection in the form of a 
down-hexagon the average temperature is equal to -2204 units, 296 units higher than the 

																																																								
1	Instead of making a single weather forecast, a set (or “ensemble”) of weather forecasts is produced. 
This set of forecasts aims to give an indication of the range of possible future states of the atmosphere. 
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initial average temperature. In both cases, heat transport into the fluid at the lower boundary 
and heat transport out of fluid at the upper boundary are identical! This conclusion leads to an 
important question in connection to the problem of climate change prediction: in how far 
does future global warming of earth’s atmosphere depend on the circulation?  
 An asymmetric temperature profile is imposed, by specifying that 

� 

Θ 001 ≠ 0. A value of 

� 

Θ 001 greater than zero will generate a concave static temperature profile, which is most 
unstable at the lower boundary, and a fluid layer which, in the static state, is colder than the 
fluid layer in the static state when 

� 

Θ 001=0. This should promote the formation of up-
hexagon. We have just seen that this is indeed the case. 
 

 
	
FIGURE	20	showing	the	horizontal	mean	temperature	profile	(eq.	166)	for	the	state	of	rest	
(black),	steady	convection	in	the	form	of	rolls	(green),	up-hexagons	(blue)	and	down-hexagons	
(red)	for	Ra=5000,	Pr=5,	a=1/(2√2)	and	

� 

Θ 001=0.	Units	are	non-dimensional	(eq.	48).	Note	that	
steady	convection	may	cool	or	warm	the	fluid!	Compare	this	figure	with	figure	4,	which	shows	
observations	of	the	steady	temperature	profile.	
 
 A drawback of the 12-component model is the fixed difference in the intensity of the 
upward motion relative the intensity of the downward motion in the hexagonal convection 
cell. This property of the hexagon is also reflected in a fixed ratio, indicated by the letter, R, 
of the area covered by the vertical motion in the middle of the cell relative to the total area. In 
the 12-component model, R=0.4. This may have a decisive influence on the net cooling or 
warming of the fluid layer by convection. The next section provides a short look into this 
aspect of convection. A solution of a higher order version of the 12-component model 
(eq.163), demonstrates that R increases in the case of hexagonal convection when more 
Fourier modes are included.  
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37. A “down-hexagon” becomes an “open cell” in a higher order model 
 
Because of the restriction on the number of modes inside the truncation of the Fourier series, 
hexagonal convection cells, according to the low-order convection model of the previous 
section, are constrained to look like the pattern shown in figure 18. The 
updraught/downdraught in the middle of the convection cell covers only 40% of the total 
area, i.e. R=0.4. The question now is, how strongly will this ratio change if we include more 
modes (higher harmonics) inside the truncation of the Fourier series of the temperature and 
the vertical velocity?  
 To answer this question we return to the full equations (152-153). It is relatively easy to 
write a computer program to integrate these equations by again applying the Runge-Kutta 
scheme of section 22 to approximate the time-derivatives. Such a spectral numerical model is 
fairly accurate because it is practically free of numerical diffusion and numerical dispersion. 
Unfortunately, a spectral model, based on the explicit computation of interaction coefficients 
(eqs. 148-149), quickly becomes very computationally expensive with increasing resolution. 
Nevertheless, a truncation, which includes all combinations of wave numbers, such that  |l|<4 
and |l|<6 and 0<|n|<4, is feasible on a laptop computer, while possessing substantially more 
degrees of freedom compared to the low-order model of the previous section. For the 
horizontal mean state (wave numbers with l=0, m=0) the Fourier series of the temperature is 
truncated at n=6, i.e. all wave vectors with l=m=0, with n<7, are included in the truncation. A 
higher resolution is feasible on a “super-computer”, but for the purpose here, it is sufficient to 
show the result of a model-integration for the above-mentioned truncation.  
 As an example, the model with this truncation is initialised with a steady state solution of 
the low-order model of the previous section. In this particular case, this solution corresponds 
to a “down-hexagon” (see the lower panel of figure 18), at parameter values, Ra=5000, Pr=5, 
a=1/(2√2) and 

� 

Θ 001=2500. The integration is continued for 0.3 time units.  
 Figure 21 shows the intensity of the vertical velocity halfway the convective layer at the 
beginning of this integration, at t=0 (left panel), and at the end of this integration, at t=0.3 
non-dimensional time units (right panel). The down-hexagon at t=0 is still a down-hexagon at 
t=0.3, but with a very different ratio, R. R increases from 0.4 at t=0 to 0.58 at t=0.3. The 
hexagonal convection cell with downward motion in the middle at t=0.3 can rightly be called 
an “open convection cell, as these convection cells are called by meteorologists to designate 
cellular cumulus cloud patterns, which are cloud-free in the middle. Open cells in the 
atmosphere are observed regularly on satellite images of the earth (figure 22). The average 
cloud cover fraction of the open cells, seen in figure 22, is about 0.4.  
 In the present numerical experiment the maximum upward velocity in the periphery of the 
convection cell, where we would expect clouds, increases from slightly more than 20 to 47 
units! The maximum downward velocity in the centreof the cell decreases from about -40 to -
30 units. 
 In closing, let me make a personal note. In my opinion, the following question is the most 
enigmatic and fascinating within the domain of turbulence theory. How and why does order 
so easily arise in complex systems with innumerable degrees of freedom? Research on this 
perhaps esoteric question, which was the topic of my PhD-research in the 1980’s, is receiving 
less attention in recent decades than in the 1960’s to 1990’s, a time which saw the appearance 
of books about order and self-organisation in complex systems, such as Hermann Haken’s 
“Synergetics” (section 28). Figure 21 is one of the most important figures of my PhD thesis. 
After finishing my PhD, I decided, partially out of necessity, but unfortunately, to discontinue 
research on this topic and to devote my time as a researcher to other maybe more pressing 
research topics in Climate Science and Meteorology. By writing these lecture notes in the 
final phase of my official career as a scientist, I have come to realise that this fascinating 
research question deserves renewed and more attention.  
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Figure	21.	Vertical	velocity	halfway	the	convective	layer	in	non-dimensional	units	(eq.	48)	at	
the	beginning	(left	panel)	and	at	the	end	(t=0.3)	(right	panel)	of	a	run	with	the	higher	order	
model.	Ra=5000,	Pr=5,	a=1/(2√2)	and	

� 

Θ 001=2500	(van	Delden,	1988).		
 

 
	
Figure	22:	Open	convection	cells	over	the	Atlantic	Ocean	near	the	Azores	on	24	January	2006,	
15:35	UTC.	NASA	MODIS	Aqua	satellite	image	with	a	resolution	of	1	km.	The	open	cell	diameter	
is	typically	30	km	while	H=2	km	(Aspect	ratio=30).	The	temperature	difference	between	sea	and	
air	is	2-5°C	and	cloud	cover	fraction	is	40%.	(Source:	Noteboom,	2007).	
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38. Exercises, part 5 
 
 
(18) 
Show that the steady state solutions of the Lorenz (1963) model are also solutions of the 12-
component model of poloidal thermal convection (eqs. 163). Derive expressions for these 
solutions. 
 
 
(19) 
(a) Make a vertical cross section of the vertical velocity and the associated temperature 
distribution at x=Lx/2, as a function of y and z, for steady hexagonal convection according to 
the 12-component model of poloidal convection (eqs.163). The corresponding values of the 
Fourier coefficients are: W111=-3.93, W021=-3.93, W112=0.22, W022=0.22, Θ111=-179.3, Θ021=-
179.3, Θ112=-1.2, Θ022=-1.2, Θ001=564.8, Θ002=672.8, Θ003=-21.6, Θ004=-0.1 (Ra=5000, 
a=1/(2√2) and 

� 

Θ 001=500). Units are non-dimensional (eq. 48). Is this an up- or a down-
hexagon?  
(b) Make a plot of the associated horizontal mean temperature profile, as in figure 19. 
 
 
(20) 
The total kinetic energy is defined as  
 

� 

K ≡
1
2

u2 + v2 + w2( )∫ dσ . 

 
Here dσ is a volume element. The integration extends over the region defined by eq. 123. The 
relation between the different velocity components in spectral space is given in eqs 140 and 
141.  
(a) Transform the above expression for the total kinetic energy to spectral space, assuming 
that the flow is poloidal.  
(b) Show that total kinetic energy is conserved by the nonlinear terms in the low-order 12-
component model of poloidal thermal convection (eqs. 163). 
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(21) 
Apply the adiabatic elimination technique to the latter 4 model equations in the equation set 
(163), following the procedure that is presented in section 25. Assume that W111 and W021 are 
self-excited and that W112 and W022 are damped. The damped modes are slaved to the self-
excited modes. Note that the positive relaxation coefficients for W111 and W021 are equal, as 
are the negative relaxation coefficients for W112 and W022. Identify the steady state convection 
patterns and analyse their stability, using the resulting two equations (figure 19). 
 
 
(22) 
For this exercise you are given the python-code of the low-order model of poloidal 
convection, which integrates the twelve equations (163), and asked to install and run this 
code on your computer. As described on page 57, identify the basins of attraction in the 
plane, W111 versus W021, of the three possible steady state solutions of the 12-component 
model (eqs. 163): rolls, up-hexagons, and down-hexagon. Do this for Pr=5, Ra=5000 and 
a=1/(2√2) and 

� 

Θ 001=0. 
 
 
(23) 
Investigate the stability of the finite amplitude convective steady state solution of the Lorenz 
model (exercise 18) in the low-order model of poloidal convection as a function of Ra and Pr, 
by performing model-integrations in which the initial steady state solution is perturbed 
slightly, assuming that a=1/(2√2) and 

� 

Θ 001=0.  
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40. Appendix to part 5: Python-code of the spectral model of poloidal 
convection (basic version) 
 

# LOW-ORDER MODEL OF POLOIDAL CONVECTION   
# (SECTION 36 of Lecture notes on Thermal Convection for "Turbulence in Fluids") 
# Numerical integration of equation-set 163 (lecture notes)  
# Skeleton version of the script (no graphics) 
 
# IMPORT MODULES 
import numpy as np 
import matplotlib.pyplot as plt 
import math as M 
from numpy import random 
 
#----------------------------------------------------------------------------------------- 
# FUNCTION THAT COMPUTES TIME-DERIVATIVES 
 
def 
time_derivative(W111_,W112_,W021_,W022_,T111_,T112_,T021_,T022_,T001_,T002_,T003_,T004_,T_MEAN_001,Ra,Pr,a
): 
 # SHORT NOTATION OF TOTAL WAVE NUMBERS (eqs. 142 and 143) 
 pi = M.pi 
 pi2 = M.pow(pi,2.0) 
 k41 = (4.0*M.pow(ay,2.0)) + 1.0 
 k44 = (4.0*M.pow(ay,2.0)) + 4.0 
 a2 = M.pow(ay,2.0) 
 
 fFT111 = -((3./2.)*pi*W111_*T022_) - ((3./2.)*pi*W021_*T112_) + (pi*T001_*W112_) - (2*pi*T002_*W111_) - 
(3*pi*T003_*W112_) + (Ra*W111_) - (pi2*k41 * T111_) 
 fFT112 = ((3./2.)*pi*W021_*T111_) + ((3./2.)*pi*W111_*T021_) + (pi*T001_*W111_) - (3*pi*T003_*W111_) - 
(4*pi*T004_*W112_) + (Ra*W112_) - (pi2*k44 * T112_) 
 fFT021 = -(3*pi*W111_*T112_) + (pi*T001_*W022_) - (2*pi*T002_*W021_) - (3*pi*T003_*W022_) + (Ra*W021_) - 
(pi2*k41 * T021_) 
 fFT022 = (3*pi*W111_*T111_) + (pi*T001_*W021_) - (3*pi*T003_*W021_) - (4*pi*T004_*W022_) + (Ra*W022_) - 
(pi2*k44 * T022_)   
 fFT001 = -(4*pi*W111_*T112_) - (4*pi*W112_*T111_) - (2*pi*W021_*T022_) - (2*pi*W022_*T021_) - 
(pi2*(T001_-T_MEAN_001)) 
 fFT002 = (8*pi*W111_*T111_) + (4*pi*W021_*T021_) - (4*pi2*T002_) 
 fFT003 = (12*pi*W111_*T112_) + (12*pi*W112_*T111_) + (6*pi*W021_*T022_) + (6*pi*W022_*T021_) - 
(9*pi2*T003_) 
 fFT004 = (16*pi*W112_*T112_) + (8*pi*W022_*T022_) - (16*pi2*T004_)  
 fFW111 = -((3./2.)*pi*W022_*W111_) -((3./2.)*pi*W021_*W112_) +((4*a2*Pr/k41)*T111_) - (pi2*Pr*k41*W111_) 
 fFW112 = ((3*pi*k41/k44)*W111_*W021_) +((4*a2*Pr/k44)*T112_) - (pi2*Pr*k44*W112_) 
 fFW021 = -(3*pi*W112_*W111_) +((4*a2*Pr/k41)*T021_) - (pi2*Pr*k41*W021_) 
 fFW022 =  (3*pi*(k41/k44)*W111_*W111_) +((4*a2*Pr/k44)*T022_) - (pi2*Pr*k44*W022_) 
 
 return fFT111, fFT112, fFT021, fFT022, fFT001, fFT002, fFT003, fFT004, fFW111, fFW112, fFW021, fFW022 
 #RETURNS TIME DERIVATIVES 
 
# END OF FUNCTION ----------------------------------------- 
#----------------------------------------------------------------------------------------- 
 
# TIME-PARAMETERS 
nrun_len = 200 # NUMBER OF RUNS (e.g. 200; see page 56 of the lecture notes) 
dt=0.0005 # time step 
nt_len = 50000  # number of time steps 
t_len = nt_len * dt # total time of integration 
 
# NON-DIMENSIONAL NUMBERS  
Ra = 5000.0  # Rayleigh number 
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Pr = 5.0  # Prandtl number 
T_MEAN_001 = 2500.0   # IMPOSED NON-LINEARITY STATIC TEMPERATURE PROFILE 
 
# SCALE-PARAMETERS  
a = 1/(2 * M.pow(2,0.5))  # ax = 2H/L 
ay = a 
ax = M.sqrt(3) * ay    #  p. 54 lecture notes 
 
# APMPLITUDES OF FOURIER COEFFICEIENTS 
W111 = np.zeros((nt_len, nrun_len), dtype='d') 
W112 = np.zeros((nt_len, nrun_len), dtype='d') 
W021 = np.zeros((nt_len, nrun_len), dtype='d') 
W022 = np.zeros((nt_len, nrun_len), dtype='d') 
T111 = np.zeros((nt_len, nrun_len), dtype='d') 
T112 = np.zeros((nt_len, nrun_len), dtype='d') 
T021 = np.zeros((nt_len, nrun_len), dtype='d') 
T022 = np.zeros((nt_len, nrun_len), dtype='d') 
T001 = np.zeros((nt_len, nrun_len), dtype='d') 
T002 = np.zeros((nt_len, nrun_len), dtype='d') 
T003 = np.zeros((nt_len, nrun_len), dtype='d') 
T004 = np.zeros((nt_len, nrun_len), dtype='d') 
 
# TIME-AXIS  
t = np.zeros((nt_len), dtype='d') 
 
# Counting number of a particular steady solution 
nROLL= 0  # NUMBER OF TIMES: STEADY ROLL 
nUP = 0   # NUMBER OF TIMES: STEADY UP-HEXAGON 
nDOWN = 0  # NUMBER OF TIMES: STEADY DOWN-HEXAGON 
 
# HEADER 
print ("   RUN   MODE       Pr      Ra   T_MEAN_001  T111     T021     T112     T022     W111     W021     
W112     W022     T001     T002     T003     T004 ")   
 
# LOOP OVER nrun_len RUNS 
for nrun in range(nrun_len): 
 t[0] = 0. 
  
 # INITIAL VALUES 
 W111[0,nrun] = 0.0 + (random.randint(-1000,1000))/100.0      
# (random.randint(-1000,1000))/100.0: return a random integer N such that -10 <= N <= +10. 
 W112[0,nrun] = 0.0  
 W021[0,nrun] = 0.0 + (random.randint(-1000,1000))/100.0 
 T111[0,nrun] = 0.0 
 T112[0,nrun] = 0.0 
 T021[0,nrun] = 0.0 
 T022[0,nrun] = 0.0 
 T001[0,nrun] = 0.0 
 T002[0,nrun] = 0.0 
 T003[0,nrun] = 0.0 
 T004[0,nrun] = 0.0 
 
 
 # TIME-LOOP  
 for nt in range(1,nt_len):  
  t[nt] = nt * dt 
 
  # FOURTH-ORDER RUNGE-KUTTA: step 1 
   
  fFT111, fFT112, fFT021, fFT022, fFT001, fFT002, fFT003, fFT004, fFW111, fFW112, fFW021, fFW022 = 
time_derivative(W111[nt-1,nrun],W112[nt-1,nrun],W021[nt-1,nrun],W022[nt-1,nrun],T111[nt-1,nrun],T112[nt-
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1,nrun],T021[nt-1,nrun],T022[nt-1,nrun],T001[nt-1,nrun],T002[nt-1,nrun],T003[nt-1,nrun],T004[nt-
1,nrun],T_MEAN_001,Ra,Pr,a) 
     
  T111_1 = T111[nt-1,nrun] + (fFT111 * dt/2) 
  T112_1 = T112[nt-1,nrun] + (fFT112 * dt/2) 
  T021_1 = T021[nt-1,nrun] + (fFT021 * dt/2) 
  T022_1 = T022[nt-1,nrun] + (fFT022 * dt/2) 
  T001_1 = T001[nt-1,nrun] + (fFT001 * dt/2) 
  T002_1 = T002[nt-1,nrun] + (fFT002 * dt/2) 
  T003_1 = T003[nt-1,nrun] + (fFT003 * dt/2) 
  T004_1 = T004[nt-1,nrun] + (fFT004 * dt/2) 
  W111_1 = W111[nt-1,nrun] + (fFW111 * dt/2) 
  W112_1 = W112[nt-1,nrun] + (fFW112 * dt/2) 
  W021_1 = W021[nt-1,nrun] + (fFW021 * dt/2) 
  W022_1 = W022[nt-1,nrun] + (fFW022 * dt/2) 
   
  # FOURTH-ORDER RUNGE-KUTTA: step 2 
     
  fFT111, fFT112, fFT021, fFT022, fFT001, fFT002, fFT003, fFT004, fFW111, fFW112, fFW021, fFW022 = 
time_derivative(W111_1,W112_1,W021_1,W022_1,T111_1,T112_1,T021_1,T022_1,T001_1,T002_1,T003_1,T004_1,T_MEAN
_001,Ra,Pr,a) 
 
  T111_2 = T111[nt-1,nrun] + (fFT111 * dt/2) 
  T112_2 = T112[nt-1,nrun] + (fFT112 * dt/2) 
  T021_2 = T021[nt-1,nrun] + (fFT021 * dt/2) 
  T022_2 = T022[nt-1,nrun] + (fFT022 * dt/2) 
  T001_2 = T001[nt-1,nrun] + (fFT001 * dt/2) 
  T002_2 = T002[nt-1,nrun] + (fFT002 * dt/2) 
  T003_2 = T003[nt-1,nrun] + (fFT003 * dt/2) 
  T004_2 = T004[nt-1,nrun] + (fFT004 * dt/2) 
  W111_2 = W111[nt-1,nrun] + (fFW111 * dt/2) 
  W112_2 = W112[nt-1,nrun] + (fFW112 * dt/2) 
  W021_2 = W021[nt-1,nrun] + (fFW021 * dt/2) 
  W022_2 = W022[nt-1,nrun] + (fFW022 * dt/2) 
         
  # FOURTH-ORDER RUNGE-KUTTA: step 3   
 
  fFT111, fFT112, fFT021, fFT022, fFT001, fFT002, fFT003, fFT004, fFW111, fFW112, fFW021, fFW022 = 
time_derivative(W111_2,W112_2,W021_2,W022_2,T111_2,T112_2,T021_2,T022_2,T001_2,T002_2,T003_2,T004_2,T_MEAN
_001,Ra,Pr,a) 
 
  T111_3 = T111[nt-1,nrun] + (fFT111 * dt) 
  T112_3 = T112[nt-1,nrun] + (fFT112 * dt) 
  T021_3 = T021[nt-1,nrun] + (fFT021 * dt) 
  T022_3 = T022[nt-1,nrun] + (fFT022 * dt) 
  T001_3 = T001[nt-1,nrun] + (fFT001 * dt) 
  T002_3 = T002[nt-1,nrun] + (fFT002 * dt) 
  T003_3 = T003[nt-1,nrun] + (fFT003 * dt) 
  T004_3 = T004[nt-1,nrun] + (fFT004 * dt) 
  W111_3 = W111[nt-1,nrun] + (fFW111 * dt) 
  W112_3 = W112[nt-1,nrun] + (fFW112 * dt) 
  W021_3 = W021[nt-1,nrun] + (fFW021 * dt) 
  W022_3 = W022[nt-1,nrun] + (fFW022 * dt) 
   
  # FOURTH-ORDER RUNGE-KUTTA: step 4 
 
  fFT111, fFT112, fFT021, fFT022, fFT001, fFT002, fFT003, fFT004, fFW111, fFW112, fFW021, fFW022 = 
time_derivative(W111_3,W112_3,W021_3,W022_3,T111_3,T112_3,T021_3,T022_3,T001_3,T002_3,T003_3,T004_3,T_MEAN
_001,Ra,Pr,a) 
   
  T111_4 = T111[nt-1,nrun] - (fFT111 * dt/2) 
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  T112_4 = T112[nt-1,nrun] - (fFT112 * dt/2) 
  T021_4 = T021[nt-1,nrun] - (fFT021 * dt/2) 
  T022_4 = T022[nt-1,nrun] - (fFT022 * dt/2) 
  T001_4 = T001[nt-1,nrun] - (fFT001 * dt/2) 
  T002_4 = T002[nt-1,nrun] - (fFT002 * dt/2) 
  T003_4 = T003[nt-1,nrun] - (fFT003 * dt/2) 
  T004_4 = T004[nt-1,nrun] - (fFT004 * dt/2) 
  W111_4 = W111[nt-1,nrun] - (fFW111 * dt/2) 
  W112_4 = W112[nt-1,nrun] - (fFW112 * dt/2) 
  W021_4 = W021[nt-1,nrun] - (fFW021 * dt/2) 
  W022_4 = W022[nt-1,nrun] - (fFW022 * dt/2) 
 
  # FOURTH-ORDER RUNGE-KUTTA: Aggregate step  
  T111[nt,nrun] = (T111_1 + (2*T111_2) + T111_3 - T111_4)/3  
  T112[nt,nrun] = (T112_1 + (2*T112_2) + T112_3 - T112_4)/3 
  T021[nt,nrun] = (T021_1 + (2*T021_2) + T021_3 - T021_4)/3 
  T022[nt,nrun] = (T022_1 + (2*T022_2) + T022_3 - T022_4)/3 
  T001[nt,nrun] = (T001_1 + (2*T001_2) + T001_3 - T001_4)/3 
  T002[nt,nrun] = (T002_1 + (2*T002_2) + T002_3 - T002_4)/3 
  T003[nt,nrun] = (T003_1 + (2*T003_2) + T003_3 - T003_4)/3 
  T004[nt,nrun] = (T004_1 + (2*T004_2) + T004_3 - T004_4)/3 
  W111[nt,nrun] = (W111_1 + (2*W111_2) + W111_3 - W111_4)/3 
  W112[nt,nrun] = (W112_1 + (2*W112_2) + W112_3 - W112_4)/3 
  W021[nt,nrun] = (W021_1 + (2*W021_2) + W021_3 - W021_4)/3 
  W022[nt,nrun] = (W022_1 + (2*W022_2) + W022_3 - W022_4)/3 
   
 MODE=999  
 if int(W111[nt,nrun])==0:  
  MODE=0 
  nROLL = nROLL + 1 
 if (int(W111[nt,nrun])==int(W021[nt,nrun])) and (W021[nt,nrun]<0):  
  MODE=1   #  down-hexagon 
  nDOWN = nDOWN + 1 
 if (int(W111[nt,nrun])==int(W021[nt,nrun])) and (W021[nt,nrun]>0):  
  MODE=2   #  up-hexagon 
  nUP = nUP + 1 
 if (int(W111[nt,nrun])==int(-W021[nt,nrun])) and (W021[nt,nrun]<0):  
  MODE=1   #  down-hexagon 
  nDOWN = nDOWN + 1 
 if (int(W111[nt,nrun])==int(-W021[nt,nrun])) and (W021[nt,nrun]>0):  
  MODE=2   #  up-hexagon 
  nUP = nUP + 1 
  #END OF TIME-LOOP 
    
 print 
"%6.0f,%6.0f,%8.2f,%8.0f,%8.0f,%8.1f,%8.1f,%8.1f,%8.1f,%8.2f,%8.2f,%8.2f,%8.2f,%8.1f,%8.1f,%8.1f,%8.1f"% 
(nrun,MODE,Pr,Ra,T_MEAN_001,T111[nt,nrun],T021[nt,nrun],T112[nt,nrun],T022[nt,nrun],W111[nt,nrun],W021[nt,
nrun],W112[nt,nrun],W022[nt,nrun],T001[nt,nrun],T002[nt,nrun],T003[nt,nrun],T004[nt,nrun]) 
 #END OF LOOP OVER MULTIPLE RUNS 
 
 
print "   nRoll   nDOWN   nUP" 
print "%6.0f,%6.0f,%6.0f"% (nROLL,nDOWN,nUP) 
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Answers to exercises 
 
Exercise 1 
The aspect ratio of observed convection cells (figure 3) is not exactly in agreement with the 
prediction made by Lord Rayleigh’s theory. Give at least two reasons for this (slight) 
disagreement? 
 
Answer to exercise 1 
The most important four reasons are: 
 
(1) In reality the boundary conditions are most likely not identical to those assumed by Lord 
Rayleigh (stress-free and perfectly conducting). 
 
(2) In reality side boundaries cannot be avoided. The horizontal size of the fluid container 
also determines the total number of convection cells. 
 
(3) Real convection cells have a finite-amplitude, while the amplitude of the disturbances in 
Rayleigh’s theory is infinitesimally small. 
 
(4) Another reason might be that ν is not constant because the viscous resistance to velocity 
shear in the fluid depends on the velocity shear in which case the fluid is called “non-
Newtonian”.  
 
(5) If convection occurs in the atmosphere latent heat is released when water vapour 
condenses and also when water droplets freeze.  This occurs only in the updraught. Latent 
heat release increases the buoyancy and hence the intensity of the updraught. The resulting 
asymmetry between the up- and downdraught enhances the aspect ratio of the convection 
cell.  
 
 
Exercise 2 
The instability criterion (41) is commonly expressed in terms of the so-called Rayleigh 
number, Ra, which is a non-dimensional number, defined as 
 

� 

Ra ≡ gαΓH
4

κν  .         (47) 

 
What is the critical value of the Rayleigh number at the preferred horizontal wave-length? 
Plot the marginal value of the Rayleigh number as a function of the aspect ratio, L/H, where 
the Rayleigh number is the ordinate. Identify the region of instability in this graph. Will this 
curve shift upwards or downwards if no-slip conditions are imposed on the upper and lower 
boundaries, instead of stress-free conditions (section 4)? 
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Answer to exercise 2 
 
The instability criterion is 
 

� 
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=
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This can also be expressed as 
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The preferred wavelength is 

� 

L = 2 2H  and 

� 

l = 2π /L . Therefore, 
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With n=1 this becomes 
 

� 

Racrit =
27π4

4
≈ 657. 

 
The curve will shift upwards if no-slip boundary conditions are imposed.  
 For n=2, the critical Rayleigh number is 17753! 
 
 
 
Exercise 3 
At which minimum Rayleigh number is a “mode” with n=2 unstable. 
 
Answer to exercise 3 
 
The minimum Rayleigh number at which a “mode” with n=2 is unstable is 

� 

108π4 ≈10520. 
 
 
Exercise 4 
 
Express eqs. (29) and (30), 
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in dimensionless form, in terms of the following units 
 

� 

L{ } = H; t{ } =
H2

κ
; T{ } =

κν
gαH3  .       (48) 

 
Verify that {t} has the unit of time (seconds) and that {T} has the units of temperature 
(degrees Kelvin).	The new (non-dimensional) unit of time, t*, is 
 

� 

t* ≡ κ
H2

t  .          (49) 

 
The system of eqs. 29 and 30 contains 5 external parameters, which may determine the 
solution. In the non-dimensional form we discover that the solution depends on only two 
parameters: the Rayleigh number and a second non-dimensional number, which is commonly 
referred to as the “Prandtl number”, Pr. Identify the Prandtl number.  
 
 
Answer to exercise 4 
 
If we define non-dimensional variables, indicated by an asterisk, as 
 

� 

H2

κ
t* ≡ t; κν

gαH3
T* ≡ T; κ

H
w* ≡ w; ∂

∂x *2
≡
1
H2

∂
∂x2

; ∂
∂z*2

≡
1
H2

∂
∂z2

. 

 
we find, for the temperature equation (29), 
 

� 

∂T '*
∂t *

= Raw'* +
∂

∂x *2 +
∂

∂z*2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ T '* . 

 
The non-dimensional form of eq. 30 is 
 

� 

∂
∂t *

∂
∂x *2 +

∂
∂z*2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ w'* = Pr ∂T '*

∂x *2 + Pr ∂
∂x *2 +

∂
∂z *2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
w'*, 

 
with the Prandtl number, 
 

� 

Pr ≡ ν
κ

, 

 
is the second non-dimensional parameter. 
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Exercise 5 
Figure 5 shows a regime diagram of laboratory convection as a function of Ra and Pr, 
demonstrating that time dependent flow emerges when Ra is sufficiently large. Time-
dependent turbulent flow emerges for lower Ra when Pr is small than when Pr is large. 
Which non-linear terms are responsible for this “early” onset of time-dependent flow at low 
Pr: those in eq. 57 (momentum advection) or those in eq. 58 (temperature advection)? Is the 
Lorenz model more applicable to low Pr convection or to high Pr convection? 
 
Answer to exercise 5 
 
The non-dimensional form of the governing equations is (see exercise 4) (dropping the 
primes) 
 

� 

dT *
dt *

=
∂T *
∂t *

+u* ∂T *
∂x *

+v * ∂T *
∂y *

+w * ∂T *
∂z *

= Raw *+
∂2

∂x *2
+

∂2

∂z *2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ T * 

 

� 

d
dt *

∂2

∂x *2 +
∂2

∂z *2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ w* =

∂
∂t *

+u* ∂
∂x *

+v * ∂
∂y *

+w * ∂
∂z *

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

∂2

∂x *2 +
∂2

∂z *2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ w *

          = Pr ∂
2T *

∂x *2 + Pr ∂2

∂x *2 +
∂2

∂z *2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

w *

 

 
If we divide the second equation by Pr, we see that the non-linear advection terms vanish if 
we let Pr go to infinity. On the other hand the non-linearity dominates if Pr goes to zero. 
Therefore, the “early” onset of time-dependent flow at low Pr is due to the effect of advection 
of momentum, i.e. the non-linear terms in the second equation. The Lorenz model does not 
contain the effect of advection of momentum. Therefore, it is more applicable to high Pr 
convection. 
 
 
Exercise 6 
The Lorenz model has two other steady state solutions (next to the state of rest), 
corresponding to finite amplitude convection. Derive expressions for X, Y, and Z in these 
steady states. Write these expressions in terms of 

� 

r ≡ Ra − Rac( )  and ax (hint: the steady 
state values of X, Y, and Z do not depend on Pr). 
 
Answer to exercise 6 
 
By putting the time-derivatives in eqs. 87-89 equal to zero we can deduce that there are three 
steady states, i.e. 
 

� 

X,Y,Z( ) = 0, 0, 0( )  

� 

X,Y,Z( ) = X0,Y0,Z0( ) ≡ r
2π 2 a2 +1( ) ,

π a2 +1( )r
2a

,  r
2

2π

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟  

or 

� 

X,Y,Z( ) = X0,Y0,Z0( ) ≡ −r
2π 2 a2 +1( ) ,

−π a2 +1( )r
2a

,   r
2

2π

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟  
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The first steady state corresponds to the state of rest, while the second and third steady states 
correspond to cases of steady convection in which both the direction of the circulation and 
temperature anomaly are exactly opposite. In both cases this circulation has an identical 
effect on the horizontal mean temperature distribution, represented by Z. 
 
 
Exercise 7 
Show that the solution of the Lorenz model in phase space (i.e. as a function of X, Y and Z) 
for large t will either collapse to a point, to a line or to a two-dimensional surface (e.g. a 
torus) for all values of Ra, Pr and ax.  This means that the volume in phase space, spanned by 
the collection of trajectories corresponding to different initial states, will, as each point in 
phase space is displaced in accordance with eqs. 87-89, shrink to zero for large t. What is the 
associated e-folding time? In the words of Lorenz (1963) (p.135), all trajectories ultimately 
become confined to a specific subspace having zero volume. If the trajectories do not lie on a 
closed line or a torus in phase space, this subspace is referred as a “strange attractor”, a 
term which was introduced by the French mathematician, David Ruelle, and the Dutch 
mathematician, Floris Takens, in 1971 (see Ruelle (2006) and section 9.3 in Strogatz (1994)). 
 
Answer to exercise 7 
In three-dimensional phase (X, Y, Z)-space the divergence of the “velocity” is proportional to 
the tendency of the volume, V, of the collection of trajectories, i.e. 
	

� 

1
V
dV
dt

=
∂
∂X

dX
dt

⎛ 
⎝ 

⎞ 
⎠ +

∂
∂Y

dY
dt

⎛ 
⎝ 

⎞ 
⎠ +

∂
∂Z

dZ
dt

⎛ 
⎝ 

⎞ 
⎠ = −π 2(a2 +1)Pr− π 2(a2 +1) − 4π 2 < 0 	.	

 
Because (1/V)dV/dt is negative, the volume of a collection of trajectories in phase space 
decreases in time. The rate at which this volume decreases is proportional to the constant, 
 

� 

−π2 a2 +1( ) Pr+1( ) + 4( ) ,	
	
i.e. the rate increases with increasing a and increasing Pr. 
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Exercise 9 
Linearise the Lorenz equations (87-89) around the steady finite amplitude convective state 
and express this linearised system as in eqs. 91 and 92. Determine the linear stability of the 
finite amplitude steady states as a function of Ra and ax, for Pr=10 (this is the value of Pr that 
was chosen by Lorenz in 1963) by determining the eigenvalues of the corresponding matrix, 
M. Draw a regime diagram, with Ra as the ordinate and ax as the abscissa, indicating regions 
where finite amplitude convection is steady and stable and regions where finite amplitude 
convection is not steady and unstable. This can be done numerically. Determine the minimum 
value of Ra and the corresponding value of ax for which all steady states are linearly unstable 
and for which the model only has time-dependent solutions (for Pr=10). This exercise is 
given as homework. 
 
Answer to exercise 9 
We assume that the three variables can be written as a sum of the steady value plus a 
perturbation as, 
 

� 

X = X0 + X '; Y = Y0 +Y '; Z = Z0 + Z ' , 
 
where the subscript, 0, denotes the steady state value and the prime denotes the perturbation. 
We assume that 
 

� 

X0 >> X '; Y0 >> Y '; Z0 >> Z ', 
 
We now substitute these assumptions into the governing equations 87-89: 
 

� 

dX '
dt

=
aPr

π a2 +1( )Y '−π
2 a2 +1( )Pr X ' ; 

� 

dY '
dt

= πaRaX '−π2 a2 +1( )Y '−2π2a Z 'X0 + X 'Z0 + X 'Z '( )

      ≈ πaRaX '−π2 a2 +1( )Y '−2π2a Z 'X0 + X 'Z0( )
 

� 

dZ '
dt

= 4π2a Y 'X0 + X 'Y0 + X 'Y '( ) − 4π2Z ' 
 
The products of perturbations are neglected. The system of three linearised equations can 
now be written as, 
 

� 

d
dt

X '
Y '
Z '

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

= M
X '
Y '
Z '

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

, 

 
where 
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� 

M =

−π2 a2 +1( )Pr aPr
π a2 +1( ) 0

πaRa − 2π2aZ0 −π2 a2 +1( ) −2π2aX0
4π2aY0 4π2aX0 −4π2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
with (see exercise 6) 
 

� 

X0 = ±
r

2π2 a2 +1( )  ; 

� 

Y0 = ±
π a2 +1( )r

2a
 ; 

� 

Z0 =
r2

2π
 . 

 
The eigenvalues of M determine the stability of the circulation. The eigenvalues can be 
determined numerically as a function of a, Pr and Ra. Instability ensues if one eigenvalue has 
a positive real part.  
 
The regime diagram has been determined with the following Python-script. The result is 
shown below. 
 
import numpy as N  
import matplotlib.pyplot as plt 
import math as M 
from scipy import linalg as LA 
 
x_len = 500 
y_len = 500 
pi = M.pi 
pi2 = M.pow(pi,2) 
Pr = 10 
ax = 0.0 
 
Matrix = N.zeros((3,3), dtype='d')  
Growthrate = N.zeros((y_len,x_len), dtype='d')  
x_axis = N.zeros((x_len), dtype='d')  
y_axis = N.zeros((y_len), dtype='d')  
Ra0 = 0 
for x in range(x_len): 
 ax = ax + 0.01 
 x_axis[x] = ax 
 ax2 = (M.pow(ax,2)+1) 
 Rac = M.pow(pi,4) * M.pow(ax2,3)/M.pow(ax,2) 
 Ra = Ra0 
  for y in range(y_len): 
  Ra =  Ra+100 
  r = 0 
  if Ra>Rac: r = M.pow(Ra-Rac,0.5) 
  y_axis[y] = Ra 
  X0 = r / (M.pow(2,0.5)*M.pow(pi,2)*ax2) 
  Y0 = pi * ax2 * r / (M.pow(2,0.5)*ax) 
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  Z0 = (Ra-Rac)/(2*pi) 
  Matrix[0,0] = -pi2 * ax2 * Pr 
  Matrix[0,1] = ax * Pr / ( pi * ax2 ) 
  Matrix[0,2] = 0.0 
  Matrix[1,0] = (pi * ax * Ra) - (2 * pi2 * ax * Z0) 
  Matrix[1,1] = -pi2 * ax2 
  Matrix[1,2] = -2 * pi2 * ax * X0  
  Matrix[2,0] = 4 * pi2 * ax * Y0  
  Matrix[2,1] = 4 * pi2 * ax * X0  
  Matrix[2,2] = -4 * pi2  
  e_vals = LA.eigvals(Matrix) 
  Growthrate[y,x] = (N.amax(e_vals)).real #maximum real part of eigenvalue 
plt.figure(figsize=(8,6)) 
plt.axis([0,5,0,50000]) 
CS =plt.contour(x_axis,y_axis, Growthrate,levels=[-0.01], linewidths=2, linestyles='solid', 
colors='black') 
plt.xlabel('a=2H/L',fontsize=18) # label along x-axis 
plt.ylabel('Rayleigh number',fontsize=18) # label along y-axis 
plt.xticks(N.arange(0,5,0.5)) 
plt.savefig("Ex8[TurbulenceFluids]a") 
plt.show() 
 
The minimum value of Ra and the corresponding value of ax for which two steady states, 
corresponding to finite amplitude convection, are linearly unstable (for Pr=10), are 15878 and 
0.77, respectively. 
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Exercise 10 
The total kinetic energy (K) and the total potential energy (P), associated with the 
perturbations (eq. 6) in two-dimensional convection (in which v=0) are, respectively, 
 

� 

K =
1
2

u2 + w2( )∫ dσ  ;         (102) 

 

� 

P = −
1
2
Pr θ 2∫ dσ .         (103) 

 
Express K and P in spectral space and show that K+P is conserved by the non-linear terms 
in the Lorenz model. 
 
 
Answer to exercise 10 
 

Since 

� 

∇ψ ≡
∂ψ
∂x
,∂ψ
∂z

⎛ 
⎝ 

⎞ 
⎠  

� 

∇ψ( )2 ≡ ∇ψ ⋅∇ψ =
∂ψ
∂x

⎛ 
⎝ 

⎞ 
⎠ 

2
+

∂ψ
∂z

⎛ 
⎝ 

⎞ 
⎠ 

2
= u2 + w2, 

and 

� 

∇ ψ∇ψ( ) = ψ∇2ψ + ∇ψ( )2 = ψ∇2ψ + u2 + w2, 
 
and, because 

� 

∇ ...( )dσ∫ = 0, 
 

� 

K = −
1
2
ψ∇2ψdσ∫ . 

 
Inserting the Fourier expansion (67), using the definition definition (62) of the basis 
functions, and making use of the orthogonality relation (68) we get 
 

� 

K =
1
2

kγ
2

γ
∑ Ψγ

2 

 
We define the kinetic energy in the component γ as  
 

� 

Kγ =
1
2
kγ
2Ψγ

2  . 

 
Translating this to the Lorenz model we get 
 

� 

K = 2(ax
2 +1)X 2 . 

 
However, the only non-linear interactions in the Lorenz model are the interaction between 
(1,1) and (-1,1) (in eq. 88) and between (1,-1)  (and 0,2) (in eq. 89) (the feedback) . Both 
interactions involve the temperature. In other words, only potential energy is transferred 
between different Fourier components (different scales). The equations containing these 
interactions are eqs. 88 and 89: 
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� 

dY
dt

= −2π 2axXZ + πaxRaX −π 2 ax +1( )Y       (88) 

� 

dZ
dt

= 4π 2axXY − 4π 2Z         (89) 

 
Therefore we need to define potential energy in terms of Y and Z.  
 
Substituting the Fourier expansion (67) into the definition of potential energy (103) we get 
 

� 

P = −
1
2
Pr Θγ

2
γ
∑  . 

 
Adding together the energy contents of all wave components we get 
 

� 

P = −Pr Θ0,n
2

n=1

∞
∑ − 2Pr

l=1

∞
∑ Θl,n

2
n=1

∞
∑  

 
Translating this to the Lorenz model we get 
 

� 

P = −Pr(2Y 2 + Z2) . 
 
To check if energy is conserved by the non-linear terms we neglect the linear terms in eqs. 88 
and 89:  
 

� 

dY
dt

= −2π 2axXZ         (88b) 

� 

dZ
dt

= 4π 2axXY  .        (89b) 

 
Now, when we multiply eq. 88b by 4PrY and eq. 89b by 2PrZ and add the two resulting 
equations we get 
 

� 

dP
dt

= 0  . 
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Exercise 11 
Use the expression for kinetic energy in spectral space, derived in exercise 10, to derive an 
expression for the kinetic energy in the steady state of finite amplitude convection in the 
Lorenz model. At which aspect ratio will the kinetic energy be a maximum if Ra=10000 and 
if Ra=20000? Is the equilibrium state of finite amplitude convection stable to small 
perturbations at these two combinations of values of the aspect and the Rayleigh number (use 
the result of exercise 8)? Is this aspect ratio at which kinetic energy is maximized larger or 
smaller than the preferred aspect ratio for onset of convection at the minimum critical 
Rayleigh number? What does this imply? 
 
 
Answer to exercise 11 
 
The kinetic in the Lorenz model is given by (see the answer to exercise 9), 
 

� 

K = 2 ax
2 +1( )X 2  

 
In the steady state of finite amplitude convection 
 

� 

X = X0 = ±
r

2π2 ax
2 +1( )  

with 

 

� 

r ≡ Ra − Rac( )   
 
and 
 

� 

Rac =
π4 ax

2 +1( )3
ax
2 . 

 
Therefore: 
 

� 

K =
Ra − Rac( )
π4 ax

2 +1( )  
 
K is maximized for ax=0.33 if Ra=10000 and for ax=0.27 if Ra=20000. Finite amplite 
convection is stable to small perturbations at these parameter values. These values of ax 
correspond a larger aspect ratio. The largest growth rate is found for smaller values of the 
aspect ratio. This implies that the preferred aspect ratio for large amplitude convection may 
be larger than the preferred scale at onset. 
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Exercise 13 
For this exercise you need to know how to program a computer (in Mathematica, Python, 
MATLAB, C …). 
(a) Integrate the Lorenz (1963) equations (eqs. 87-89) in time numerically through at least 5 
non-dimensional time units. Approximate the time-derivatives with the fourth order (RK-4) 
Runge-Kutta scheme (section 22 or https://en.wikipedia.org/wiki/Runge–Kutta_methods). 
Do this for the exact same values of ax, Ra, Pr, which Lorenz used to illustrate the chaotic 
solution of his model, i.e. ax=1/(21/2), Ra=28Rac (Rac=657), Pr=10. The initial condition 
should lie close to steady state convection (insert a very small perturbation to this steady 
state). 
(b) Locate local maxima of Z(t), Zn and plot Zn+1 as a function of Zn, in other words reproduce 
the Lorenz map (see page 139 of Lorenz (1963), or p. 326-328 of Strogatz (1994)). According 
to the Lorenz map, the value of the next maximum (next peak in Z) is predictable.  
(c) Now, plot the time between local maxima of Z(t) as a function of time (e.g. the time half-
way between two maxima). Discuss the plot. 
(d) Perform a second integration with a slightly different initial condition, by weakly 
perturbing only one of the three variables. Plot a measure of the separation in phase space 
between the two solutions and estimate the associated Lyapunov-exponent, l (see p. 320-323 
of Strogatz (1994)). 
(e) Compare the “climate” of the two solutions, i.e. the time average of X, Y, and Z . You may 
have to extend your integration in time by many more than 5 non-dimensional time units to 
get a “stable” answer. What conclusions can you draw? Now, compare the “climate” of the 
absolute values of the two solutions, i.e. the time average of |X|, |Y|, and |Z| . What do you 
conclude from this? 
(f) Model climate can also be characterised by the so-called “probability distribution 
function” (“pdf”). A plot of the “pdf” as a function of X and Y gives the probability of finding 
the Lorenz model state vector in any point in X-Y plane of phase space. Plot this “pdf” and 
interpret your result in the light of (e). 
 
 
Answer to exercise 13 
(a) 
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The initial condition for the first run (run 1) is (see exercise 6) 
 

� 

X = X0; Y = Y0 + 0.1; Z = Z0. 
 
Therefore, only Y is perturbed. Until t=5 the solution exhibits a constant period with an 
exponentially increasing amplitude. After t=5 it becomes non-periodic. The amplitude of the 
oscillation varies chaotically (figure above). The time between successive peaks also varies 
chaotically. 
 
(b) 

 
This “Lorenz map” is based on run 1, which was extended to 15 time units. The dots seem to 
lie on a line, implying that each peak-value is predictable from the previous peak value.  
 
(c) 
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The time between successive peaks (plotted in the graph above) is constant initially, but 
varies erratically after t=5. Therefore, although the successive peak values themselves after 
t=5 are predictable, the time at which the next peak will occur is not predictable. This chaotic 
behaviour occurs after the solution has reached the limits of the “attractor” in phase space, as 
we will see in the next part of the exercise. 
 
(d) 
 
A second run (run 2) is performed with  
 

� 

X = X0; Y = Y0 + 0.2; Z = Z0  
 
as initial condition. The time evolution of Z in both integrations is shown in the graph below.  
The red line corresponds to integration shown in 10(a). The blue line corresponds to the time 
evolution in the second run, with a slightly different initial condition. The total time of 
integration is extended to 15 time units. In the first 5 time units the amplitude of the 
oscillation in the second run (blue) grows much faster than the amplitude of the oscillation in 
the first run (red).    
 

 
 
The graph on the next page shows the natural logarithm of δ as a function of time, where δ is 
defined as the distance between the two trajectories in three-dimensional phase space (with 
slightly different initial conditions) (see previous graph). The curve is similar to the 
schematic figure given in Strogatz (1994) (figure 9.3.5 on page 321). The Lyapunov 
exponent, λ, is estimated by fitting a straight line to the first part of the curve (e.g. between 
t=0 and t=4.0) and determining the slope of this line. This yields a slope, λ=1.33>0. This 
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means that the trajectories diverge exponentially. The divergence stops when the separation is 
comparable to the dimensions of the attractor. 
Because the initial state in this case lies very close to the finite amplitude fixed point, it is 
also possible to determine the Lyapunov exponent from the matrix M in exercise 9. The 
Lyapunov exponent consists of three components, which correspond to the three eigenvalues 
of M. Each real part of each eigenvalue represents the Lyapunov exponent in one of the three 
directions in phase space.  

 
 
(e) 
The steady values of of |X|, |Y| and |Z| are 
   X0  Y0  Z0  
   6.4  627.6  2823.2 
 
The distance between the two trajectories in three-dimensional phase space increases 
exponentially in time during first 5 time units. After 5 tot 6 time units this distance oscillates 
around a quasi-constant value. The climate of the solution might best be determined by 
averaging the solution for, say, t>7.5. The “climate” of the two solutions, indeed, is quite 
similar when we take the average for 7.5<t<15, as can be seen in the table below.  Note that 
the climate does not coincide with the steady state! 
 
The value of |X|, |Y| and |Z|, averaged over the last 7.5 time units of both runs. 
Run  X  Y  Z   
1   4.85  513  2463 
2   4.81  509  2455 
 
Earth’s climate is governed by non-linear equations. Therefore, it is very likely a chaotic 
system, with solutions similar to the chaotic solutions of the Lorenz equations, studied here. 
Can we derive some hope from this result for prediction of the statistics of Earth’s climate in 
the coming decades?  
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Exercise 15 
The Lorenz model represents the lowest order model of convection. It describes the growth, 
when the Rayleigh exceeds the critical Rayleigh, of the amplitude of one Fourier mode in 
both the stream function and the temperature, and the interaction of this Fourier mode with 
one additional Fourier mode, which represents the modification of the horizontal-mean 
temperature field by convection.  
 If the Rayleigh number exceeds the critical value for onset of convection for two Fourier 
modes (l,n)=(1,1) and (l,n)=(2,1): what will happen? The Lorenz model does not describe 
this situation in which more than one Fourier mode or wave is linearly unstable, or “self-
excited”.  
 If two modes grow, will this lead to a less ordered flow pattern? Observations indicate that 
this is mostly not the case (figure 3). It appears as if one Fourier mode predominates. Why is 
one discrete scale of motion selected? 
 These questions might be answered with an extension of Lorenz’s (1963), in which two 
linearly unstable (self-excited) modes (or waves) with wave vectors,  (l,n)=(1,1) and 
(l,n)=(2,1), are included inside the truncation. Which other modes would you include inside 
this truncated model? How many first order ordinary differential equations would this model 
have? 
 
Answer to exercise 15 
 
Because of the symmetry relations (eqs. 79-84), our attention is retricted to the upper right 
quadrant of two-dimensional wave number space. Due to the selection rule (eq. 74), the 
modes, which are excited by the interaction of (1,1) and (2,1), are (1,2) and (3,2). Therefore, 
to describe the interaction of the two basic modes, (1,1) and (2,1), we need to include (1,2) 
and (3,2). These wave modes are included inside the truncation of the Fourier expansion of 
the streamfunction and the temperature. This yields 8 nonlinear first order differential 
equations, describing the time evolution 8 amplitudes. In addition to this we need to include 
(0,2) and (0,4) in the Fourier expansion of the temperature. The modes, (0,1) and (0,3) are not 
included because these separately imply a non-zero average temperature perturbation. This 
yields a model consisting of 10 nonlinear first order differential equations. 
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(17) 
For this exercise you are given the python-code of the 10-component model of two-
dimensional convection, which integrates the twelve equations (105), and asked to install and 
run this code on your computer. Oscillations with a period in the range between 1 and 10 
non-dimensional viscous time-units (H2/ν) are observed in a layer of fluid with low Pr and 
Rayleigh numbers which are just super-critical to several times super-critical (Krishnamurti, 
1973). The 10-component model also exhibits oscillations at low Pr (=0.1), with ax=1/2√2 
and for Rayleigh number 1.5 times supercritical.  
(a) Can you qualitatively foresee the existence of these oscillations from eqs. 112 and 113?  
(b) Investigate these oscillations in the 10-component model (105). Are the oscillations 
qualitatively in accord with your predictions based on eqs. 112 and 113?  
(c) Do you get oscillations with periods similar to periods observed by Krishnamurti? 
(d) Is this solution “chaotic”? If so, why? 
(e) Make a scatter plot (“map”) of the peak-values of A as a function of the previous peak-
value of A. Compare this “map” with the Lorenz map (figure 12).  
(f) Plot the time between successive peaks as a function of time half-way these peaks. What 
do you conclude from this? 
 
 
Answer to exercise 17 
 
(a) 
The evolution of A, B, C and D in a model run with Pr =0.1, ax=1/2√2 and for Ra 1.5 times 
supercritical yields the result shown in the graph below. The total time span of the integration 
is 500 time units. The amplitude of the oscillations in A (red line) varies between -0.05 and -
0.11 units.  
You can qualitatively foresee these oscillations form eqs. 112 and 113: 
 

� 

dA
dt

= λA + µ1B
2( )A; dB

dt
= λB + µ 2A

2( )B, 

� 

µ1 > 0  and 

� 

µ2 < 0. 

 
Oscillations occur if λA<0 and λΒ>0:  if B grows because λΒ>0,  A will grow due to the term 

� 

µ1B
2A , which, in turn will damp B due to the term 

� 

µ2A
2B ,	which will arrest the growth of 

A, etc.  
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(b)  
We see that, A grows when the amplitude of the linearly unstable mode (B) has reached 
exceeded threshold, after which B is damped by A, which, in turn makes A relax back to zero. 
(c)  
The period of the oscillations in A varies between 26 and 37 “conductive” time units. In terms 
of “viscous” time units, this would be 2.6 to 3.7 units, which is within the range of the 
measurements reported by Krishnamurti. 
(d) The solution is “chaotic” because it depends on initial conditions. This is illustrated 
below. The initial conditions of these two solutions differ very little. On the left is the 
solution corresponding to the graph shown above. In particular, the mean value of A, differs 
appreciably (negative on the left and positive on the right). 
 

 
(e)  
The map is shown below. The dots seem to lie on a smooth curve with no “thickness”, as is 
the case with the Lorenz map (section 19). The amplitude of a peak can be predicted with 
knowledge of the amplitude of the previous peak! 
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(f) 
The scatter plot below shows the period (non-dimensional time units) between two peaks in 
chronological order for the integration lasting 500 time units. The statistics excludes the first 
two peaks. Conclusion: although the amplitude of the next peak may be predictable (part e), 
when it will occur is not predictable. 
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(18) 
Show that the steady state solutions of the Lorenz (1963) model are also solutions of the 12-
component model of poloidal thermal convection (eqs. 163). Derive expressions for these 
solutions. 
 
Answer to exercise 18 
 
The Lorenz model can be retrieved from the 12-component model equations bt putting all 
coefficients equal to zero, except W021, Θ021 and Θ002. If we use the short notation of the 
Lorenz model, i.e. W021=X, Θ021=Y and Θ002=Z, we obtain the follwing set of equations: 
 

� 

dX
dt

=
4a2 Pr
4a2 +1

Y − π 2 Pr(4a2 +1)X  

� 

dY
dt

= −2πZX + RaX − π 2(4a2 +1)Y  

� 

dZ
dt

= 4πXY − 4π 2Z  

 
The steady states are found by putting the time-derivative equal to zero. The expression for 
the steady state value, X0, of X is 
 

� 

X0
2 =

2a2

π 2(4a2 +1)2
Ra − π 4 (4a2 +1)3

4a2
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ =
2a2

π 2(4a2 +1)2
Ra − Rac( ) , 

 
The steady state value, Y0, of Y is related to X0 by 
 

� 

Y0 =
π 2(4a2 +1)2

4a2
X0, 

 
Furthermore: 
 

� 

Z0 =
X0Y0
π

. 

 
With the above, we find that 
 

� 

Z0 =
1
2π
(Ra − Rac ) , 

 
where 
 

� 

Rac ≡
π 4 (4a2 +1)3

4a2
.	
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(19) 
(a) Make a vertical cross section of the vertical velocity and the associated temperature 
distribution at x=Lx/2, as a function of y and z, for steady hexagonal convection, according to 
the 12-component model of poloidal convection (eqs.163). The corresponding values of the 
Fourier coefficients are: W111=-3.93, W021=-3.93, W112=0.22, W022=0.22, Θ111=-179.3, Θ021=-
179.3, Θ112=-1.2, Θ022=-1.2, Θ001=564.8, Θ002=672.8, Θ003=-21.6, Θ004=-0.1 (Ra=5000, 
a=1/(2√2 and 

� 

Θ 001=500). Units are non-dimensional (eq. 48). Is this an up- or a down-
hexagon?  
(b) Make a plot of the associated horizontal mean temperature profile, as in figure 19. 
 
Answer to exercise 19 
(a)  
In the cross-section below, red and blue shading represents temperature, normalised with Ra. 
The temperature ranges from -1.1 to 0, with red: >-0.5 and blue: <0.5. Contours represent 
vertical velocity. Contour interval: 5 non-dimensional units; solid: positive; dashed: negative.  
This is an up-hexagon. 

 
(b)  

 
Red line: temperature profile corresponding to the up-hexagon (units: non-dimensional). 
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(20) 
The total kinetic energy is defined as  
 

� 

K ≡
1
2

u2 + v2 + w2( )∫ dσ . 

 
Here dσ is a volume element. The integration extends over the region defined by eq. 123. The 
relation between the different velocity components in spectral space is given in eqs 140 and 
141.  
(a) Transform the above expression for the total kinetic energy to spectral space, assuming 
that the flow is poloidal.  
(b) Show that total kinetic energy is conserved by the nonlinear terms in the low-order 12-
component model of poloidal thermal convection (eqs. 163). 
 
Answer to exercise 20 
 
(a) For simplicity we Fourier transform one of the three terms in the definition of K: 
 

� 

K ≡
1
2

w2( )∫ dσ . 
 
Substituting the Fourier series for w into this equation we find 
 

� 

K ≡
1
2

WαSα
α
∑∫ WβSβ

β
∑ dσ =

1
2

WαSα
α
∑∫ WβS−β

*

β
∑ dσ =

1
2

WαWβSα
α ,β
∑∫ S−β

* dσ . 

 
Because 
 

� 

Sα∫ S−β
* dσ = δα ,−β , 

 
non-zero contributions to the integral are found only if α=-β. Therefore 
 

� 

K =
1
2

Wα
α
∑ W−α =

1
2

−Wα
IW−α

I

α
∑ ==

1
2

Wα
I( )2

α
∑ . 

 
Here we have used information from section 35 (eqs 160 and 156a). 
 The total kinetic is (dropping the superscript, I), 
 

� 

K =
1
2

Uα( )2 + Vα( )2 + Wα( )2{ }
α
∑  . 

 
Using the diagnostic relations derived form the continuity equation and the definition of the 
vertical component of the vorticity, 
 

� 

Uα = −
axnα lα
qα
2 Wα 		and	

� 

Vα = −
aynαmα
qα
2 Wα 	,	

	
we obtain 
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� 

K =
1
2

kα
2

π 2qα
2 Wα( )2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ α
∑  . 

 
(b) Remember that the sum over all wave vectors within the truncation of the model includes 
the negative wave numbers also. This means that if the wave vector (1,1,1) is included, then 
this means that (-1,-1,1), (-1,1,1), (-1,-1,1), (1,1,-1), (-1,-1,-1), (-1,1,-1), (-1,-1,-1) re also 
included. From eqs. 142 and 143 we find: 
 

� 

q111
2 = q021

2 = q112
2 = q022

2 = ax
2 + ay

2 = 4a2 
 
and  
 

� 

k111
2 = k021

2 = π 2(4a2 +1)  ; 

� 

k112
2 = k022

2 = π 2(4a2 + 4) . 
 
Using the symmetry relations listed in section 35, the total kinetic energy in the twelve-
component model of poloidal convection: 
 

� 

K =
1
2
8 4a

2 +1
4a2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ W111
2 + 4 4a2 +1

4a2
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ W021
2 + 8 4a

2 + 4
4a2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ W112
2 + 4 4a2 + 4

4a2
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ W022
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
The equations governing the spectral amplitudes of the vertical velocity are (eqs. 163) 
 

� 

dW111
dt

= −
3
2
πW022W111 −

3
2
πW021W112 

� 

dW021
dt

= −3πW112W111 

� 

dW112
dt

= 3π 4a
2 +1

4a2 + 4
W111W021 

� 

dW022
dt

= 3π 4a
2 +1

4a2 + 4
W111
2   

 
The time evolution of the total kinetic is given by 
 

� 

dK
dt

= 2 4a
2 +1
a2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
dW111

2

dt
+
4a2 +1
a2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
dW021

2

dt
+ 2 4a

2 + 4
a2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
dW112

2

dt
+
4a2 + 4
a2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
dW022

2

dt

= −3π 4a2 +1
a2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ W022W111
2 − 3π 4a2 +1

a2
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ W021W112W111 − 3π
4a2 +1
a2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ W112W111W021

+6π 4a2 +1
a2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ W111W021W112 + 3π 4a2 +1
a2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ W111
2 W022 = 0.

 

 
Total kinetic energy is conserved. 
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(21) 
Apply the adiabatic elimination technique to the latter 4 model equations in the equation set 
(163), following the procedure that is presented in section 25. Assume that W111 and W021 are 
self-excited and that W112 and W022 are damped. The damped modes are slaved to the self-
excited modes. Note that the positive relaxation coefficients for W111 and W021 are equal, as 
are the negative relaxation coefficients for W112 and W022. Identify the steady state convection 
patterns and analyse their stability, using the resulting two equations (figure 19). 
 
 
Answer to exercise 21 
 
Following the procedure presented in section 25 we write the latter four equations in the eq. 
set (163) as follows. 
 

� 

dA
dt

= −
3
2
πAD −

3
2
πBD + λAA 

� 

dB
dt

= −3πAC + λBB  

� 

dC
dt

= χAB −
3
2
πBD + λCC  

� 

dD
dt

= χA2 + λDD 

 
where 
 

� 

A ≡W111; B ≡W021; C ≡W112; D ≡W022  , 
 
and 

� 

χ ≡ 3π 4a
2 +1

4a2 + 4
> 0 . 

 
The linear terms in the original equations have been bundled together as a linear growth or 
damping term. Exponential growth occurs if the coefficient, λ, is positive, while exponential 
damping occurs if the coefficient, λ, is negative. The critical Rayleigh numbers for mode A 
and mode B are identical, because the total wave number, k (eq. 143), of these modes is 
identical. Therefore 
 

� 

λA = λB ≡ λ1 > 0 
 
if this critical Rayleigh number is exceeded. For a=1/(2√2), the critical Rayleigh number of 
modes A and B is 657 (see exercise 2). For this value of a,  
 
χ=π. 
 
 The critical Rayleigh numbers for mode C and mode D are identical, because the total 
wave number, k, of these modes is identical. The critical Rayleigh number for the modes with 
n=2 (=17753 if a=1/(2√2); see exercise 2) is much higher than the critical Rayleigh number 
for a mode with n=1 (=657 if a=1/(2√2)).  If the critical Rayleigh number of C and D is not 
exceeded 
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� 

λC = λD ≡ λ2 < 0  . 
 
Hence we can apply the Herman Haken’s adiabatic elimination technique, which leads to 
 

� 

D = −
χ
λ2

A2 and C = −
χ
λ2

AB .      (1) 

 
Substituting this into the equations for the time evolution of A and B yields 
 

� 

dA
dt

= −µA2 − µB2 + λ1( )A  ,       (2a) 

� 

dB
dt

= −2µA2 + λ1( )B .       (2b) 

 
With χ=π, 
 

� 

µ ≡ −
3
2
π 2

λ2
> 0 because λ2 < 0	. 

 
The steady states are 
 
(1) 

� 

A0 = B0 = 0: rest-state; 

(2) 

� 

A0 = ±
λ1
µ

; B0 = 0; C0 = 0; D0 = −
χ
λ2

λ1
µ

> 0 : unknown (3D) pattern; 

(3) 

� 

A0 = ±
λ1
2µ

; B0 = ±
λ1
2µ

; C0 = ±
1
2

χ
λ2

λ1
µ

; D0 = −
1
2

χ
λ2

λ1
µ

> 0: hexagonal (3D) pattern. 

 
The rest-state (steady state number 1) is unstable to small perturbations in A and B if λ1>0.  
 If A is perturbed while B=0, the system will settle into steady state number (2) in the list 
above. The perturbation in A will grow only if the perturbation is so small that  
 

� 

A2 <
λ1
µ .	

 
If this condition is satisfied, a pattern will reach steady state number 2. In this steady state, B 
will remain equal to zero because 
	

� 

dB
dt

= −2µA2 + λ1( )B = −λ1B 

	
implying that B is damped since λ1>0.  
 If the initial value of A is such that  
 

� 

A2 >
λ1
µ 	,	

	
the perturbation will relax back to the steady state value, (λ1/µ)1/2, implying that the second 
steady state, in the list above, is stable.  
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 A 2D (roll) convection pattern, with A=0, is possible, but not in a steady state, according 
to eqs 2a,b. This is because a perturbation in B, while A=0, will grow exponentially according 
to 
 

� 

dB
dt

= λ1B , 

 
because λ1>0. If  
 

� 

B2 >
λ1
µ . 

 
A will not grow, even if A is perturbed. The process that ultimately halts the exponential 
growth of B is captured by the equations for Θ021 and Θ002 (eqs. 163).  
 It is not possible to say something definite about the stability of steady state solution 
number 3. 
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(22) 
For this exercise you are given the python-code of the low-order model of poloidal 
convection, which integrates the twelve equations (163), and asked to install and run this 
code on your computer. As described on page 56, identify the basins of attraction in the 
plane, W111 versus W021, of the three possible steady state solutions of the 12-component 
model (eqs. 163): rolls, up-hexagons, and down-hexagon. Do this for Pr=5, Ra=5000 and 
a=1/(2√2) and 

� 

Θ 001=0. 
 
 
Answer to exercise 22 
 
The scatter plot below shows the result of 1000 model integrations (eqs. 163), lasting 25 time 
units, with Ra=5000, Pr=5, a=1/(2√2) and 

� 

Θ 001=0. The black circles with coloured crosses 
represent the steady states in terms of W111 and W021 at these parameter values, where red is a 
down hexagon, blue is an up-hexagon and green is a roll. The steady state of rest 
(W111=W021=0) is not indicated explicitly because it is linearly unstable. The red dots 
represent the initial values of W111 and W021 of runs, which have a down-hexagon as final 
stable steady state. The blue dots represent the initial values of W111 and W021 of runs, which 
have a up-hexagon as final stable steady state. The green dots represent the initial values of 
W111 and W021 of runs, which have a roll convection pattern as final stable steady state. The 
1000 integrations lead to rolls in 386 cases, up-hexagons in 298 cases and down-hexagons in 
315 cases. The fixed points associated with steady state hexagons appear to lie very close to 
the edge of their respective basins of attraction, bordering the basins of attraction of rolls. 
Sensitivity to initial conditons is greatest near the state of rest. 
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Below the result of repeating this mathematical experiment with a different value of 

� 

Θ 001 
(=500). The 1000 integrations lead to rolls in 477 cases, up-hexagons in 269 cases and down-
hexagons in 252 cases. The “basins of attraction” of rolls (green dots) expand at the cost of 
the basins of attraction of down-hexagons (red dots).  
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(23) 
Investigate the stability of the finite amplitude convective steady state solution of the Lorenz 
model (exercise 18) in the low-order model of poloidal convection as a function of Ra and Pr, 
by performing model-integrations in which the initial steady state solution is perturbed 
slightly, assuming that a=1/(2√2) and 

� 

Θ 001=0.  
 
 
Answer to exercise 23 
 
We use the result of exercise 18. The steady state convective solutions of the Lorenz model 
are 
 

� 

W021 =
a

π (4a2 + 1)
2(Ra − Rac ); Θ021 =

π (4a2 + 1)
4a

2(Ra − Rac ); Θ002 =
W021Θ021

π  

� 

W021 =
−a

π (4a2 + 1)
2(Ra − Rac ); Θ021 =

−π (4a2 + 1)
4a

2(Ra − Rac ); Θ002 =
W021Θ021

π  

	
We substitute these expressions in the model as initial condition and then perturb the initial 
state slightly, and check what happens for different Ra and Pr when we integrate the model 
numerically. The initial state is perturbed by adding random numbers between -1 and +1 to 
the amplitudes, W021,  Θ021 and Θ002. We calculate the distance in phase space between the 
perturbed initial condition and the fixed point, corresponding to the steady state. At the end of 
the integration we calculate the distance in phase space between the final state and the fixed 
point. The fixed point is unstable if the distance to the fixed point has increased. The fixed 
point is stable if the distance to the fixed point has decreased. The diagram below shows the 
result. A stable solution is indicated by circles; an unstable solution is indicated by red 
crosses. Note that Lorenz’s (1963, p.136) result is recovered, namely that, when Pr=10, the 
finite amplitude convection is linearly unstable if Ra/Rac>24.74 (see also exercise 9).  
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Next, the initial state is perturbed by adding random numbers between -1 and +1 to the 
amplitudes, Θ111, W021, Θ021 and Θ002. Whereas in the previous calculation Lorenz’s solution is 
perturbed only “from the inside”, we are now perturbing the solution also “from the outside”, 
i.e in the amplitude, Θ111. The result is shown below. The region of instability is much larger. 

 
 
Finally we repeat this analysis, but now we also perturb W021 initially, next to Θ111, W021, Θ021 
and Θ002. 
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EXTRA QUESTIONS 
 
 
(16) (homework) 
In this exercise you are asked to perform a simulation with the ten-component model 
(equation set 105) and analyse the output by answering the questions below. 
(a) Perform two simulations for Pr=0.1 and Pr=10, respectively with the following parameter 
values fixed by j=1, ax=

� 

1 2 2 , and Ra=20Rac.   
Give the student the result of an integration of 10-component model at fixed Ra and Pr (0.1) 
(other parameters identical to simulation illustrated in figure 14/15) 
Determine the growth(damping) rates or relaxation coefficients of the 4 modes at this Ra.  
Use these to determine the µ ’s and then integrate eqs. 109 and 110. 
 
Question about hystereis … 
(17)  
Write a computer program, which numerically integrates eqs. 71 and 76 taking into account 
the symmetry relations listed in eqs. 79-82, and simulates the spectral energy cascade, which 
is described in section 10. Truncate the spectrum such that wave numbers for which |l+n|≤N 
are taken into account, where N varies from 2 to 10. Check energy conservation by the 
nonlinear interactions. Integrate the equations for 

� 

ax =1/ 2 , Pr=10 and Ra=28Rac. Interpret 
the result in the light of the discussion in section 10. (Use the RK-4 scheme, given is section 
22). 
 
 
 


